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The Current Forensic Workflow 
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Forensic  
Target (3TB) 

Clone 
@150MB/s 

~5.5 hrs 

Process 
@10MB/s 
~82.5 hrs 

 We can start working on the case after 88 hours. 

129* 

* http://accessdata.com/distributed-processing 



Scalable Forensic Workflow 
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Forensic  
Target (3TB) 

 We can start working on the case immediately. 

Clone 

Process 
@150MB/s 



Current Forensic Processing 

 Hashing/filtering/correlation 

 File carving/reconstruction 

 Indexing 
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The ultimate goal of this work is to make  
similarity hash-based correlation scalable & I/O-bound.  



Motivation for similarity approach: 
Traditional hash filtering is failing 

 Known file filtering: 
o Crypto-hash known files, store in library (e.g. NSRL) 
o Hash files on target 
o Filter in/out depending on interest 

 Challenges 
o Static libraries are falling behind 
 Dynamic software updates, trivial artifact transformations 

 We need version correlation 

o Need to find embedded objects 
 Block/file in file/volume/network trace 

o Need higher-level correlations 
 Disk-to-RAM 

 Disk-to-network 
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Scenario #1: Fragment Identification  

 Given a fragment, identify source 

o Fragments of interest are 1-4KB in size 

o Fragment alignment is arbitrary 
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v 

Source artifacts (files)  

Disk fragments (sectors) Network fragments (packets) 



Scenario #2: Artifact Similarity  

 Given two binary objects, detect similarity/versioning 

o Similarity here is purely syntactic;  

o Relies on commonality of the binary representations. 
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Similar drives 
(shared blocks/files) 

Similar files 
(shared content/format) 



Solution: Similarity Digests 
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sdbf1 sdbf2 

sdhash sdhash 

Is this fragment present on the drive? 

 0 .. 100 

sdhash 

Are these artifacts correlated? 

 0 .. 100 

sdbf1 sdbf2 

sdhash sdhash 

sdhash 

All correlations based on bitstream 

commonality 



Quick Review:  
Similarity digests & sdhash 
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Generating sdhash fingerprints (1) 
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Digital artifact  
(block/file/packet/volume) as byte stream 

… 

Features 
(all 64-byte sequences) 



Generating sdhash fingerprints (2) 
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Select characteristic features 
(statistically improbable/rare) 

… 

Digital artifact  



Generating sdhash fingerprints (3) 
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Data with low information content

Hnorm doc files



= Artifact SD fingerprint 

Sequence of Bloom filters (sdbf) 

+ + 

8-10K avg 8-10K avg 8-10K avg 

Generating sdhash fingerprints (4) 
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… 
SHA-1 

bf2 

SHA-1 

bf3 

SHA-1 

bf1 

Bloom filter 
 local SD fingerprint 
 256 bytes 
 up to 128/160 features 



Bloom filter (BF) comparison 
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bfA 

bfB 

A 

B 

BFScore bitwise AND 0 .. 100 

Based on BF theory, 

overlap due to chance is analytically predictable. 

Additional BF overlap is proportional to overlap in features. 

BFScore is tuned such that BFScore(Arandom, Brandom) = 0. 



      max1 

      maxn 

      max2 

SDBF fingerprint comparison 
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SDScore(A,B) = Average(max1, max2, …, maxn) 



Scaling up:  
Block-aligned digests &  

parallelization 
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= Artifact SD fingerprint 

Sequence of Bloom filters (sdbf-dd) 

+ + 

16K 16K 

Block-aligned similarity digests (sdbf-dd) 
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… 
SHA-1 

bf2 

SHA-1 

bf3 

SHA-1 

bf1 

Bloom filter 
 local SD fingerprint 
 256 bytes 
 up to 192 features 

16K 



Advantages & challenges for block-
aligned similarity digests (sdbf-dd) 

 Advantages 
o Parallelizable computation 

o Direct mapping to source data 

o Shorter (1.6% vs 2.6% of source) 

 Faster comparisons (fewer BFs) 

 Challenges 
o Less reliable for smaller files 

o Sparse data 

o Compatibility with sdbf digests 

 Solution 
o Increase features for sdbf filters: 128 160 

o Use 192 features per BF for sdbf-dd filters 

o Use compatible BF parameters to allow sdbf  sdbf-dd comparisons 
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sdhash 1.6: sdbf vs. sdbf-dd accuracy 
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Sequential throughput: sdhash 1.3 

 Hash generation rate 
o Six-core Intel Xeon X5670  @ 2.93GHz 

 ~27MB/s per core 

o Quad-Core Intel Xeon  @ 2.8 GHz 

 ~20MB/s per core 

 Hash comparison 
o 1MB vs. 1MB: 0.5ms 

 T5 corpus (4,457 files, all pairs) 
o 10mln file comparisons in ~ 15min 
 667K file comps per second 

 Single core 
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sdhash 1.6: File-parallel generation rates 
on 27GB real data (in RAM) 
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sdhash 1.6: Optimal file-parallel 
generation: 5GB synthetic target (RAM) 
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sdhash-dd: Hash generation rates  
10GB in-RAM target (RAM) 
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Throughput summary: sdhash 1.6 

 Parallel hash generation 

o sdbf: file-parallel execution 

 260 MB/s on 12-core/24-threaded machine 

o sdbf-dd: block-parallel execution 

 370 MB/s (SHA1 —> 330MB/s) 

 Optimized hash comparison rates 

o 24 threads: 86.6 mln BF/s 

 1.4 TB/s for small file comparison (<16KB) 
I.e., we can search for a small file in a reference set of 1.4TB in 1s 
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The Envisioned Architecture 
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libsdbf 

CLI: sdhash 

Files: 
sdhash-

file 

Disk: 
sdhash-dd 

Network: 
sdhash-

pcap 

Service: sdbf_d 

Cluster: 
sdbfCluster 

Client: 
sdbfWeb 

Client: 
sdbfViz 

API 

C/C++ C# Python 



The Current State 

26 

libsdbf 

CLI: sdhash 

Files: 
sdhash-

file 

Disk: 
sdhash-dd 

Network: 
sdhash-

pcap 

Service: sdbf_d 

Cluster: 
sdbfCluster 

Client: 
sdbfWeb 

Client: 
sdbfViz 

API 

C/C++ C# Python 



Todo List (1) 

 libsdbf 
o C++ rewrite (v2.0) 

o TBB parallelization 

 sdhash-file 
o More command line options/compatibility w/ssdeep 

o Service-based processing (w/ sdbf_d) 

 GPU acceleration 

 sdhash-pcap 
o Pcap-aware processing:  
 payload extraction, file discovery, timelining 
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Todo List (2) 

 sdbf_d 

o Persistance: XML 

o Service interface: JSON 

o Server clustering 

 sdbfWeb 

o Browser-based management/query 

 sdbfViz 

o Large-scale visualization & clustering  
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Further Development 

 Integration w/ RDS 
o sdhash-set: construct SDBFs from existing SHA1 sets 

 Compare/identify whole folders, distributions, etc. 

 Structural feature selection 
o E.g., exe/dll, pdf, zip, … 

 Optimizations 
o Sampling 

o Skipping 
 Under min continuous block assumption 

o Cluster “core” extraction/comparison 

 Representation 
o Multi-resolution digests 

o New crypto hashes 

o Data offsets  
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Thank you! 

 http://roussev.net/sdhash 

o wget  http://roussev.net/sdhash/sdhash-1.6.zip 

o make 

o ./sdhash  

 Contact:  

Vassil Roussev 

vassil@roussev.net 

 Reminder  

DFRWS’12: Washington DC, Aug 6-8 

Paper deadline: Feb 20, 2012 

Data sniffing challenge to be released shortly  
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