
Vassil Roussev

The Current Forensic Workflow

2

Forensic
Target (3TB)

Clone
@150MB/s

~5.5 hrs

Process
@10MB/s
~82.5 hrs

 We can start working on the case after 88 hours.

129*

* http://accessdata.com/distributed-processing

Scalable Forensic Workflow

3

Forensic
Target (3TB)

 We can start working on the case immediately.

Clone

Process
@150MB/s

Current Forensic Processing

 Hashing/filtering/correlation

 File carving/reconstruction

 Indexing

4

The ultimate goal of this work is to make
similarity hash-based correlation scalable & I/O-bound.

Motivation for similarity approach:
Traditional hash filtering is failing

 Known file filtering:
o Crypto-hash known files, store in library (e.g. NSRL)
o Hash files on target
o Filter in/out depending on interest

 Challenges
o Static libraries are falling behind
 Dynamic software updates, trivial artifact transformations

 We need version correlation

o Need to find embedded objects
 Block/file in file/volume/network trace

o Need higher-level correlations
 Disk-to-RAM

 Disk-to-network

5

Scenario #1: Fragment Identification

 Given a fragment, identify source

o Fragments of interest are 1-4KB in size

o Fragment alignment is arbitrary
6

v

Source artifacts (files)

Disk fragments (sectors) Network fragments (packets)

Scenario #2: Artifact Similarity

 Given two binary objects, detect similarity/versioning

o Similarity here is purely syntactic;

o Relies on commonality of the binary representations.

7

Similar drives
(shared blocks/files)

Similar files
(shared content/format)

Solution: Similarity Digests

8

sdbf1 sdbf2

sdhash sdhash

Is this fragment present on the drive?

 0 .. 100

sdhash

Are these artifacts correlated?

 0 .. 100

sdbf1 sdbf2

sdhash sdhash

sdhash

All correlations based on bitstream

commonality

Quick Review:
Similarity digests & sdhash

9

Generating sdhash fingerprints (1)

10

Digital artifact
(block/file/packet/volume) as byte stream

…

Features
(all 64-byte sequences)

Generating sdhash fingerprints (2)

11

Select characteristic features
(statistically improbable/rare)

…

Digital artifact

Generating sdhash fingerprints (3)

12

All features

Hnorm

0..1000

Weak
Feature

Filter

Rare
Local

Feature

Selector

Feature Selection Process

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 100 200 300 400 500 600 700 800 900 1000
P

ro
b

a
b

il
it

y

(a) Hnorm distribution: doc

Data with low information content

Hnorm doc files

= Artifact SD fingerprint

Sequence of Bloom filters (sdbf)

+ +

8-10K avg 8-10K avg 8-10K avg

Generating sdhash fingerprints (4)

13

…
SHA-1

bf2

SHA-1

bf3

SHA-1

bf1

Bloom filter
 local SD fingerprint
 256 bytes
 up to 128/160 features

Bloom filter (BF) comparison

14

bfA

bfB

A

B

BFScore bitwise AND 0 .. 100

Based on BF theory,

overlap due to chance is analytically predictable.

Additional BF overlap is proportional to overlap in features.

BFScore is tuned such that BFScore(Arandom, Brandom) = 0.

 max1

 maxn

 max2

SDBF fingerprint comparison

15

BFScore(bfA
1,bfB

1) BFScore(bfA
1,bfB

2) BFScore(bfA
1,bfB

m) …

… BFScore(bfA
2,bfB

1) BFScore(bfA
2,bfB

2) BFScore(bfA
2,bfB

m)

BFScore(bfA
n,bfB

1) BFScore(bfA
n,bfB

2) BFScore(bfA
n,bfB

m) …

…

…

…

bfB
1 bfB

2 bfB
m … SDB

bfA
1

bfA
2

bfA
n

…

SDA

SDScore(A,B) = Average(max1, max2, …, maxn)

Scaling up:
Block-aligned digests &

parallelization

16

= Artifact SD fingerprint

Sequence of Bloom filters (sdbf-dd)

+ +

16K 16K

Block-aligned similarity digests (sdbf-dd)

17

…
SHA-1

bf2

SHA-1

bf3

SHA-1

bf1

Bloom filter
 local SD fingerprint
 256 bytes
 up to 192 features

16K

Advantages & challenges for block-
aligned similarity digests (sdbf-dd)

 Advantages
o Parallelizable computation

o Direct mapping to source data

o Shorter (1.6% vs 2.6% of source)

 Faster comparisons (fewer BFs)

 Challenges
o Less reliable for smaller files

o Sparse data

o Compatibility with sdbf digests

 Solution
o Increase features for sdbf filters: 128 160

o Use 192 features per BF for sdbf-dd filters

o Use compatible BF parameters to allow sdbf sdbf-dd comparisons

18

sdhash 1.6: sdbf vs. sdbf-dd accuracy

19

Sequential throughput: sdhash 1.3

 Hash generation rate
o Six-core Intel Xeon X5670 @ 2.93GHz

 ~27MB/s per core

o Quad-Core Intel Xeon @ 2.8 GHz

 ~20MB/s per core

 Hash comparison
o 1MB vs. 1MB: 0.5ms

 T5 corpus (4,457 files, all pairs)
o 10mln file comparisons in ~ 15min
 667K file comps per second

 Single core

20

sdhash 1.6: File-parallel generation rates
on 27GB real data (in RAM)

21

sdhash 1.6: Optimal file-parallel
generation: 5GB synthetic target (RAM)

22

sdhash-dd: Hash generation rates
10GB in-RAM target (RAM)

23

Throughput summary: sdhash 1.6

 Parallel hash generation

o sdbf: file-parallel execution

 260 MB/s on 12-core/24-threaded machine

o sdbf-dd: block-parallel execution

 370 MB/s (SHA1 —> 330MB/s)

 Optimized hash comparison rates

o 24 threads: 86.6 mln BF/s

 1.4 TB/s for small file comparison (<16KB)
I.e., we can search for a small file in a reference set of 1.4TB in 1s

24

The Envisioned Architecture

25

libsdbf

CLI: sdhash

Files:
sdhash-

file

Disk:
sdhash-dd

Network:
sdhash-

pcap

Service: sdbf_d

Cluster:
sdbfCluster

Client:
sdbfWeb

Client:
sdbfViz

API

C/C++ C# Python

The Current State

26

libsdbf

CLI: sdhash

Files:
sdhash-

file

Disk:
sdhash-dd

Network:
sdhash-

pcap

Service: sdbf_d

Cluster:
sdbfCluster

Client:
sdbfWeb

Client:
sdbfViz

API

C/C++ C# Python

Todo List (1)

 libsdbf
o C++ rewrite (v2.0)

o TBB parallelization

 sdhash-file
o More command line options/compatibility w/ssdeep

o Service-based processing (w/ sdbf_d)

 GPU acceleration

 sdhash-pcap
o Pcap-aware processing:
 payload extraction, file discovery, timelining

27

Todo List (2)

 sdbf_d

o Persistance: XML

o Service interface: JSON

o Server clustering

 sdbfWeb

o Browser-based management/query

 sdbfViz

o Large-scale visualization & clustering

28

Further Development

 Integration w/ RDS
o sdhash-set: construct SDBFs from existing SHA1 sets

 Compare/identify whole folders, distributions, etc.

 Structural feature selection
o E.g., exe/dll, pdf, zip, …

 Optimizations
o Sampling

o Skipping
 Under min continuous block assumption

o Cluster “core” extraction/comparison

 Representation
o Multi-resolution digests

o New crypto hashes

o Data offsets

29

Thank you!

 http://roussev.net/sdhash

o wget http://roussev.net/sdhash/sdhash-1.6.zip

o make

o ./sdhash

 Contact:

Vassil Roussev

vassil@roussev.net

 Reminder

DFRWS’12: Washington DC, Aug 6-8

Paper deadline: Feb 20, 2012

Data sniffing challenge to be released shortly

 30

http://roussev.net/sdhash
http://roussev.net/sdhash/sdhash-1.6.zip
http://roussev.net/sdhash/sdhash-1.6.zip
http://roussev.net/sdhash/sdhash-1.6.zip
http://roussev.net/sdhash/sdhash-1.6.zip
mailto:vassil@roussev.net

