Scalable Data Correlation

Managing TB-scale investigations with similarity digests

m THE UNIVERSITY o
u?vo NEW ORLEANS

Vassil Roussev

vassil@roussev.net

The Current Forensic Workflow

Forensic
Target (3TB)

e Clone « Process
" (@150MB]s @10MB/s
~5.5 hrs ~82.5 hrs

129°

@

= We can start working on the case after 86 hours.

—_—

Scalable Forensic Workflow

Clone

Forensic
Target (3TB) .

Process

@150MB/s

= We can start working on the case immediately.

Current Forensll\!!cessing

> Hashing/filtering/correlation
> File carving/reconstruction

» Indexing

The ultimate goal of this work is to make
similarity hash-based correlation scalable & I/O-bound. |

Motivation for similarity approach:
Traditional hash filtering is failing

» Known file filtering:
o Crypto-hash known files, store in library (e.g. NSRL)
o Hash files on target
o Filter in/out depending on interest

» Challenges

o Static libraries are falling behind
= Dynamic software updates, trivial artifact transformations
=» We need version correlation

o Need to find embedded objects

= Block/file in file/volume/network trace
o Need higher-level correlations

= Disk-to-RAM

= Disk-to-network

——

Scenario #1: Fragment Identification

Source artifacts (files)

.EI.

Disk fragments (sectors) / \\ Network fragments (packets)

» Given a fragment, identify source

o Fragments of interest are 1-4KB in size -
o Fragment alignment is arbitrary

Scenario #2: Artifact Similarity

Similar files Similar drives
(shared content/format) (shared blocks/files)

> Given two binary objects, detect similarity/versioning
o Similarity here is purely syntactic;
o Relies on commonality of the binary representations.

Solution: Similarity Digests

sdhash sdhash

sdhash
Is this fragment present on the drive? Are these artifacts correlated?
= ..100 = ..100

All correlations based on bitstream
commonality

-

Quick Review:
Similarity digests & sdhash

Generating sdhash fingerprints (1)

Digital artifact
(block/file/packet/volume) as byte stream

Features
(all 64-byte sequences)

Generating sdhash fingerprints (2)

Digital artifact

Select characteristic features
(statistically improbable/rare)

Generating sdhash fingerprints (3)

Feature Selection Process
All features

H S — EELS
norm =% Feature —°*
0.1000 fe 3 Filter —
_

Rare
Local
Feature
Selector

Hporm = doc files

12

Generating sdhash fingerprints (4)

SHA-1

SHA-1

SHA-1

= Artifact SD fingerprint
Sequence of Bloom filters (sdbf)

o
Y—
0

+

bf,

—

+

bf.
|

Bloom filter
o local SD fingerprint

o 256 bytes

o up to 128/160 features

T

Bloom filter (BF) comparison

bitwise AND BFc e 0 ..100

Based on BF theory,
overlap due to chance is analytically predictable.

Additional BF overlap is proportional to overlap in features.

BI:Score is tuned such that BI:Score(Arandom’ Brandom) = 0.

SDBF fingerprin parison

,
[

BFarebiyibled) | BFaoo00f?) o BFa (0100

.
[
1

i [B FScore(bfAZ’bel)} [B FScore(bfAZ’bez)} B [B FScore(bfAZ’bem)}

SD¢.,..(A,B) = Average(max,, max,, ..., max,)

-

Scaling up:

Block allgned dlgests &

Block-aligned similarity digests (sdbf-dd)

16K

«— 16K

SHA-1

SHA-1

SHA-1

= Artifact SD fingerprint

o
Y—
0

Sequence of Bloom filters (sdbf-dd)

—

o |local SD fingerprint

o 256 bytes

Bloom filter

o up to 192 features

17

Advantages & challenges for block-
aligned similarity digests (sdbf-dd)

» Advantages

o Parallelizable computation
o Direct mapping to source data

o Shorter (1.6% vs 2.6% of source)
=» Faster comparisons (fewer BFs)

» Challenges

o Less reliable for smaller files
o Sparse data
o Compatibility with sdbf digests

> Solution
o Increase features for sdbf filters: 128=>» 160
o Use 192 features per BF for sdbf-dd filters
o Use compatible BF parameters to allow sdbf < sdbf-dd comparisons

18

sdhash 1.6: sdbf vs. sdbf-dd accuracy

Query size Query size

1,000 2,000
1,100 2,200
1,200 2,400
1,300 2,600

1,400 2,800
3,000
1,600 3,200

1,700 3,400
1,800 3,600
1,900 3,300

Sequential throughplul!: sdhash 1.3

» Hash generation rate
o Six-core Intel Xeon X5670 @ 2.93GHz
~27MB/s per core
o Quad-Core Intel Xeon @ 2.8 GHz
~20MB/s per core

» Hash comparison
o 1MB vs. 1MB: 0.5ms

sdhash 1.6: File-parallel generation rates
on 27GB real data (in RAM)

29.08

143.05

207.36

21

sdhash 1.6: Optimal file-parallel
generation: 5GB synthetic target (RAM)

100.00
166.67

208.33

263.16

22

sdhash-dd: Hash generation rates
10GB in-RAM target (RAM)

Throughput (MB/s) | Speedup

107.53

188.68

370.37

23

Throughput summary: sdhash 1.6

» Parallel hash generation

o sdbf: file-parallel execution
= 260 MB/s on 12-core/24-threaded machine

o sdbf-dd: block-parallel execution
= 370 MB/s (SHA1 —> 330MB/s)

» Optimized hash comparison rates

o 24 threads: 86.6 mln BF/s
=» 1.4 TB/s for small file comparison (<16KB)

l.e., we can search for a small file in a reference set of 1.4TB in 1s

The Envisioned Architecture

| libsdbf

I

CLI: sdhash Service: sdbf d
Files: . Network: i ,
Disk: Cluster: Client: Client:

25

The Current State

libsdbf

3 (2 [. =

e

Todo Li

> libsdbf

o C++rewrite (v2.0)
o TBB parallelization

> sdhash-file

o More command line options/compatibility w/ssdeep
o Service-based processing (w/ sdbf d)

> GPU acceleration .

Todo L

> sdbf d

o Persistance: XML

o Service interface: JSON

o Server clustering

> sdbfWeb

o Browser-based man

Further Dev ent

> Integration w/ RDS

o Sdhash-set: construct SDBFs from existing SHA1 sets
= Compare/identify whole folders, distributions, etc.

> Structural feature selection
o E.g., exe/dll, pdf, zip, ...

> Optimizations
o Sampling
o Skipping
= Under min continuous block assumpti =
Cluster “

Thank

» http://roussev.net/sdhash
o wget http://roussev.net/sdhash/sdhash-1.6.zip

o make
o ./sdhash

» Contact:

Vassil Roussev
vassil@roussev.net -

http://roussev.net/sdhash
http://roussev.net/sdhash/sdhash-1.6.zip
http://roussev.net/sdhash/sdhash-1.6.zip
http://roussev.net/sdhash/sdhash-1.6.zip
http://roussev.net/sdhash/sdhash-1.6.zip
mailto:vassil@roussev.net

