
Vassil Roussev

The Current Forensic Workflow

2

Forensic
Target (3TB)

Clone
@150MB/s

~5.5 hrs

Process
@10MB/s
~82.5 hrs

 We can start working on the case after 88 hours.

129*

* http://accessdata.com/distributed-processing

Scalable Forensic Workflow

3

Forensic
Target (3TB)

 We can start working on the case immediately.

Clone

Process
@150MB/s

Current Forensic Processing

 Hashing/filtering/correlation

 File carving/reconstruction

 Indexing

4

The ultimate goal of this work is to make
similarity hash-based correlation scalable & I/O-bound.

Motivation for similarity approach:
Traditional hash filtering is failing

 Known file filtering:
o Crypto-hash known files, store in library (e.g. NSRL)
o Hash files on target
o Filter in/out depending on interest

 Challenges
o Static libraries are falling behind
 Dynamic software updates, trivial artifact transformations

 We need version correlation

o Need to find embedded objects
 Block/file in file/volume/network trace

o Need higher-level correlations
 Disk-to-RAM

 Disk-to-network

5

Scenario #1: Fragment Identification

 Given a fragment, identify source

o Fragments of interest are 1-4KB in size

o Fragment alignment is arbitrary
6

v

Source artifacts (files)

Disk fragments (sectors) Network fragments (packets)

Scenario #2: Artifact Similarity

 Given two binary objects, detect similarity/versioning

o Similarity here is purely syntactic;

o Relies on commonality of the binary representations.

7

Similar drives
(shared blocks/files)

Similar files
(shared content/format)

Solution: Similarity Digests

8

sdbf1 sdbf2

sdhash sdhash

Is this fragment present on the drive?

 0 .. 100

sdhash

Are these artifacts correlated?

 0 .. 100

sdbf1 sdbf2

sdhash sdhash

sdhash

All correlations based on bitstream

commonality

Quick Review:
Similarity digests & sdhash

9

Generating sdhash fingerprints (1)

10

Digital artifact
(block/file/packet/volume) as byte stream

…

Features
(all 64-byte sequences)

Generating sdhash fingerprints (2)

11

Select characteristic features
(statistically improbable/rare)

…

Digital artifact

Generating sdhash fingerprints (3)

12

All features

Hnorm

0..1000

Weak
Feature

Filter

Rare
Local

Feature

Selector

Feature Selection Process

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 100 200 300 400 500 600 700 800 900 1000
P

ro
b

a
b

il
it

y

(a) Hnorm distribution: doc

Data with low information content

Hnorm doc files

= Artifact SD fingerprint

Sequence of Bloom filters (sdbf)

+ +

8-10K avg 8-10K avg 8-10K avg

Generating sdhash fingerprints (4)

13

…
SHA-1

bf2

SHA-1

bf3

SHA-1

bf1

Bloom filter
 local SD fingerprint
 256 bytes
 up to 128/160 features

Bloom filter (BF) comparison

14

bfA

bfB

A

B

BFScore bitwise AND 0 .. 100

Based on BF theory,

overlap due to chance is analytically predictable.

Additional BF overlap is proportional to overlap in features.

BFScore is tuned such that BFScore(Arandom, Brandom) = 0.

 max1

 maxn

 max2

SDBF fingerprint comparison

15

BFScore(bfA
1,bfB

1) BFScore(bfA
1,bfB

2) BFScore(bfA
1,bfB

m) …

… BFScore(bfA
2,bfB

1) BFScore(bfA
2,bfB

2) BFScore(bfA
2,bfB

m)

BFScore(bfA
n,bfB

1) BFScore(bfA
n,bfB

2) BFScore(bfA
n,bfB

m) …

…

…

…

bfB
1 bfB

2 bfB
m … SDB

bfA
1

bfA
2

bfA
n

…

SDA

SDScore(A,B) = Average(max1, max2, …, maxn)

Scaling up:
Block-aligned digests &

parallelization

16

= Artifact SD fingerprint

Sequence of Bloom filters (sdbf-dd)

+ +

16K 16K

Block-aligned similarity digests (sdbf-dd)

17

…
SHA-1

bf2

SHA-1

bf3

SHA-1

bf1

Bloom filter
 local SD fingerprint
 256 bytes
 up to 192 features

16K

Advantages & challenges for block-
aligned similarity digests (sdbf-dd)

 Advantages
o Parallelizable computation

o Direct mapping to source data

o Shorter (1.6% vs 2.6% of source)

 Faster comparisons (fewer BFs)

 Challenges
o Less reliable for smaller files

o Sparse data

o Compatibility with sdbf digests

 Solution
o Increase features for sdbf filters: 128 160

o Use 192 features per BF for sdbf-dd filters

o Use compatible BF parameters to allow sdbf  sdbf-dd comparisons

18

sdhash 1.6: sdbf vs. sdbf-dd accuracy

19

Sequential throughput: sdhash 1.3

 Hash generation rate
o Six-core Intel Xeon X5670 @ 2.93GHz

 ~27MB/s per core

o Quad-Core Intel Xeon @ 2.8 GHz

 ~20MB/s per core

 Hash comparison
o 1MB vs. 1MB: 0.5ms

 T5 corpus (4,457 files, all pairs)
o 10mln file comparisons in ~ 15min
 667K file comps per second

 Single core

20

sdhash 1.6: File-parallel generation rates
on 27GB real data (in RAM)

21

sdhash 1.6: Optimal file-parallel
generation: 5GB synthetic target (RAM)

22

sdhash-dd: Hash generation rates
10GB in-RAM target (RAM)

23

Throughput summary: sdhash 1.6

 Parallel hash generation

o sdbf: file-parallel execution

 260 MB/s on 12-core/24-threaded machine

o sdbf-dd: block-parallel execution

 370 MB/s (SHA1 —> 330MB/s)

 Optimized hash comparison rates

o 24 threads: 86.6 mln BF/s

 1.4 TB/s for small file comparison (<16KB)
I.e., we can search for a small file in a reference set of 1.4TB in 1s

24

The Envisioned Architecture

25

libsdbf

CLI: sdhash

Files:
sdhash-

file

Disk:
sdhash-dd

Network:
sdhash-

pcap

Service: sdbf_d

Cluster:
sdbfCluster

Client:
sdbfWeb

Client:
sdbfViz

API

C/C++ C# Python

The Current State

26

libsdbf

CLI: sdhash

Files:
sdhash-

file

Disk:
sdhash-dd

Network:
sdhash-

pcap

Service: sdbf_d

Cluster:
sdbfCluster

Client:
sdbfWeb

Client:
sdbfViz

API

C/C++ C# Python

Todo List (1)

 libsdbf
o C++ rewrite (v2.0)

o TBB parallelization

 sdhash-file
o More command line options/compatibility w/ssdeep

o Service-based processing (w/ sdbf_d)

 GPU acceleration

 sdhash-pcap
o Pcap-aware processing:
 payload extraction, file discovery, timelining

27

Todo List (2)

 sdbf_d

o Persistance: XML

o Service interface: JSON

o Server clustering

 sdbfWeb

o Browser-based management/query

 sdbfViz

o Large-scale visualization & clustering

28

Further Development

 Integration w/ RDS
o sdhash-set: construct SDBFs from existing SHA1 sets

 Compare/identify whole folders, distributions, etc.

 Structural feature selection
o E.g., exe/dll, pdf, zip, …

 Optimizations
o Sampling

o Skipping
 Under min continuous block assumption

o Cluster “core” extraction/comparison

 Representation
o Multi-resolution digests

o New crypto hashes

o Data offsets

29

Thank you!

 http://roussev.net/sdhash

o wget http://roussev.net/sdhash/sdhash-1.6.zip

o make

o ./sdhash

 Contact:

Vassil Roussev

vassil@roussev.net

 Reminder

DFRWS’12: Washington DC, Aug 6-8

Paper deadline: Feb 20, 2012

Data sniffing challenge to be released shortly

 30

http://roussev.net/sdhash
http://roussev.net/sdhash/sdhash-1.6.zip
http://roussev.net/sdhash/sdhash-1.6.zip
http://roussev.net/sdhash/sdhash-1.6.zip
http://roussev.net/sdhash/sdhash-1.6.zip
mailto:vassil@roussev.net

