

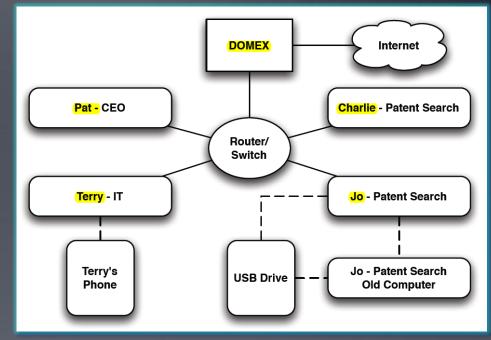
Content triage with similarity digests: The M57 case study

Vassil Roussev Candice Quates

The M57 Case Study Introduction

M57: The company & setup

Employees:


- President: Pat McGoo
- IT: Terry
- Researchers: Jo, Charlie

Period

- o 11/16/2009—12/11/2009
- \circ 11/20/2009 Jo's computer replaced
- \circ $\,$ Last day: police kick down the door $\,$

> Data

Daily HDD, RAM, network captures

M57: The data (1.5 TB)

> HDD images

- 84 images, 10-40GB each
- Total: **1,423 GB**
- RAM snapshots
 - o 78 snapshots, 256-1024 MB each
 - Total: **107 GB**
- > Network:
 - 49 traces, 4.6 GB
- ▷ USB
 - 4.1 GB
- > Kitty set
 - 125 JPEGs, 224 MB

Scenario #1: Contraband

Setup:

 From the detective reports in the scenario, there is reason to suspect that one of M57's computers (Jo's) has been used in the contraband of "kitty porn".

> Questions:

- Were any M57 computers used in contraband?
- \circ If so, when did the accident happen?
- Is there evidence of intent?
- How was the content distributed?
- Was any of the content sent outside the company network?

Scenario #2: Eavesdropping

Setup:

 It is suspected that somebody is spying on the CEO (Pat) electronically.

> Plan?

- Search for potentially rogue processes that might have been introduced on his computer.
- $\circ~$ First HDD image is clean and serves as baseline.

Scenario #3: Corporate espionage

≻ Setup:

 There is suspicion that somebody has leaked company secrets.

> Plan?

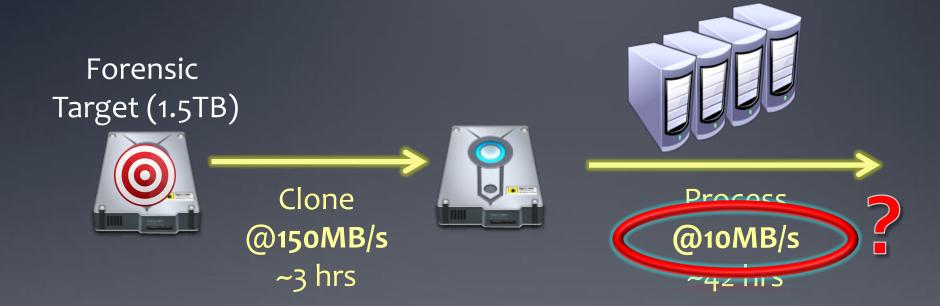
 \circ Search RAM snapshots for interesting processes

The need for better triage

Triage

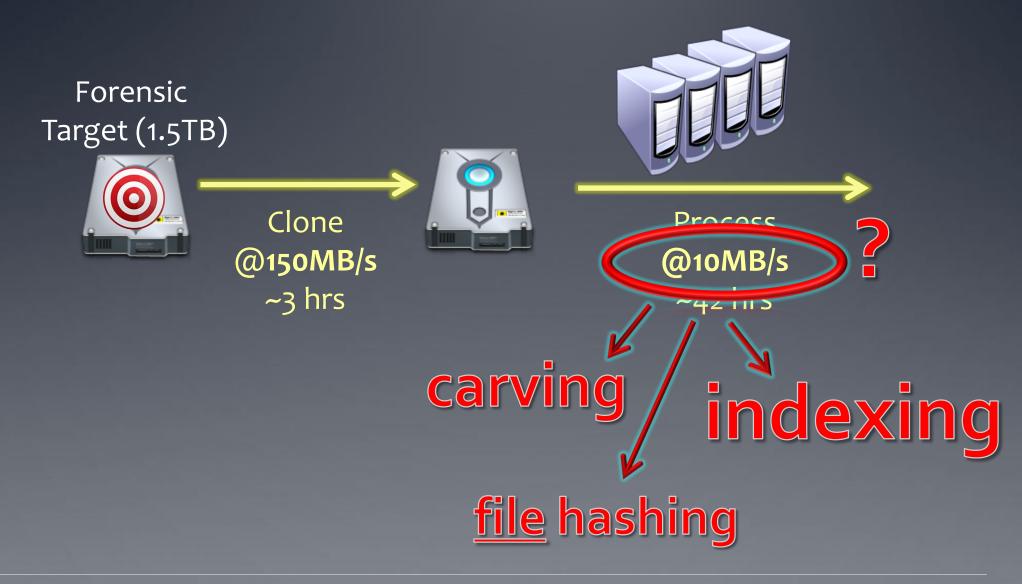
- > *Fast, reliable* initial screen of the acquired data:
 - *fast:* all you can do in 5/10/15/ ... min;
 - *reliable:* provides *strong hints* (low FP).
- ➤ Goals:
 - Identify the most (ir)relevant targets/artifacts;
 - Build an overall understanding of the case what are the likely answers?
- Location of work:
 - We assume post-acquisition work in a lab, but
 - It could be done in the field (given enough hardware)

Metadata- vs content-based analysis

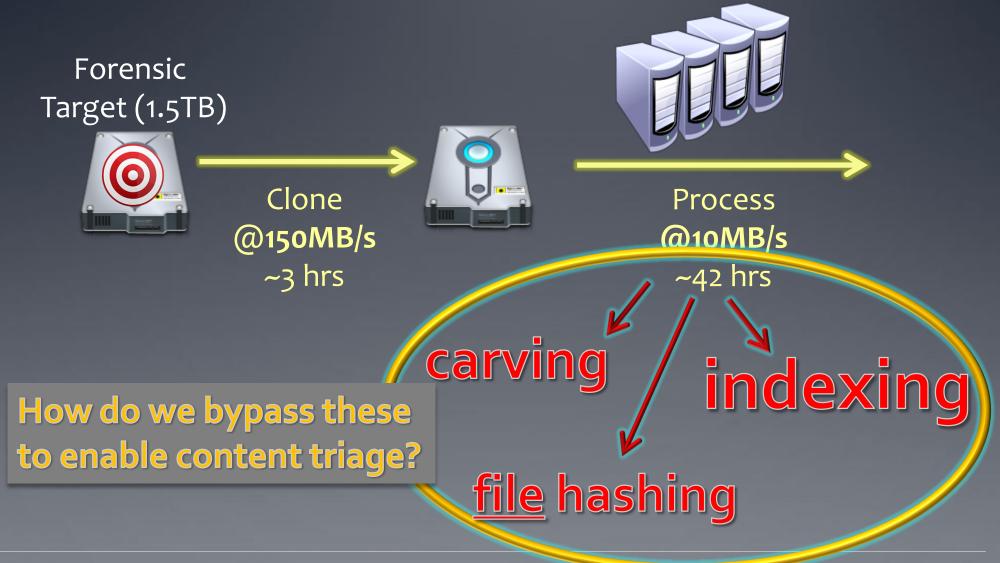

Metadata-based analysis

- Use FS metadata, registry, logs, etc.
- **Pro:** small volume, high-level logical information
- **Con:** not looking at the data, cannot see remnants, does not work on a data dump (e.g. RAM), metadata is fragile
- Typical basis for (manual) triage

Content analysis


- Works on actual data content
 - Flie/block hashes, indexing, carving, etc.
- **Pro:** looking at actual data, can work with pieces
- Con: large volume, lower level data
- → Almost never used in triage (perceived as too slow)

Why is content analysis so slow?

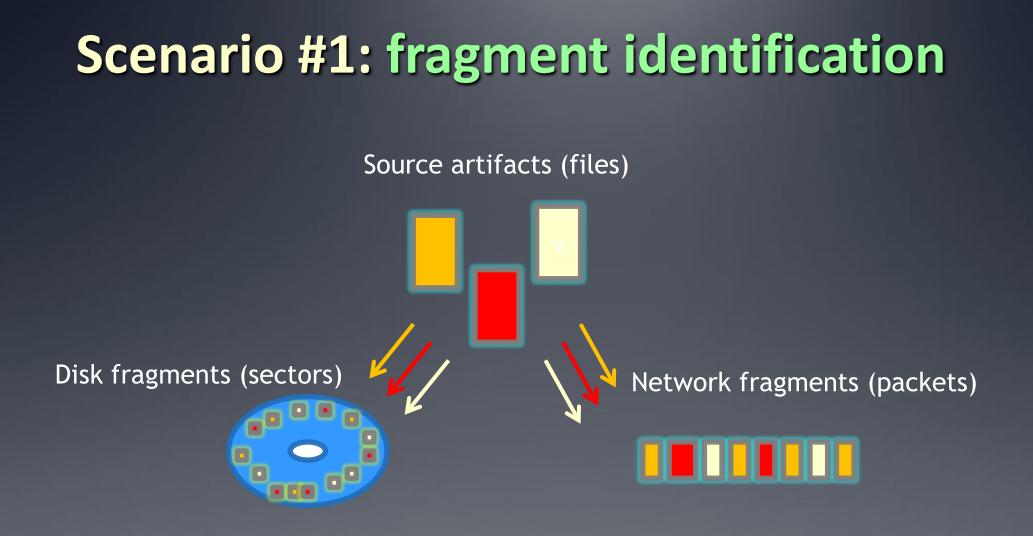


→ We can *start* working on the case after 42 hours (!)

Why is content analysis so slow?

Why is content analysis so slow?

Data Correlation with similarity digests


Motivation for similarity approach: Traditional hash filtering is failing

> Known file filtering:

- Crypto-hash known files, store in library (e.g. NSRL)
- Hash files on target
- Filter in/out depending on interest

> Challenges

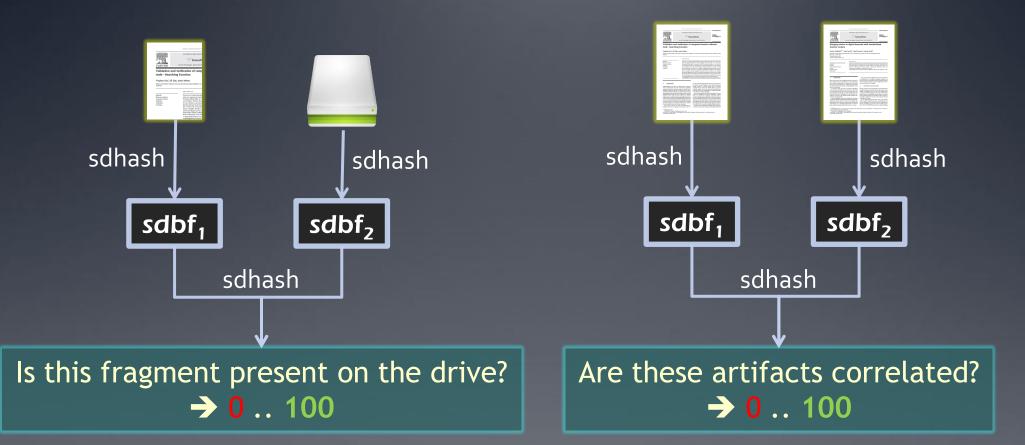
- Static libraries are falling behind
 - Dynamic software updates, trivial artifact transformations
 - → We need **version** correlation
- \circ Need to find embedded objects
 - Block/file in file/volume/network trace
- Need higher-level correlations
 - Disk-to-RAM
 - Disk-to-network

Given a fragment, identify source

- *Minimum* fragments of interest are 1-4KB in size
- Fragment *alignment is arbitrary*

Scenario #2: artifact similarity

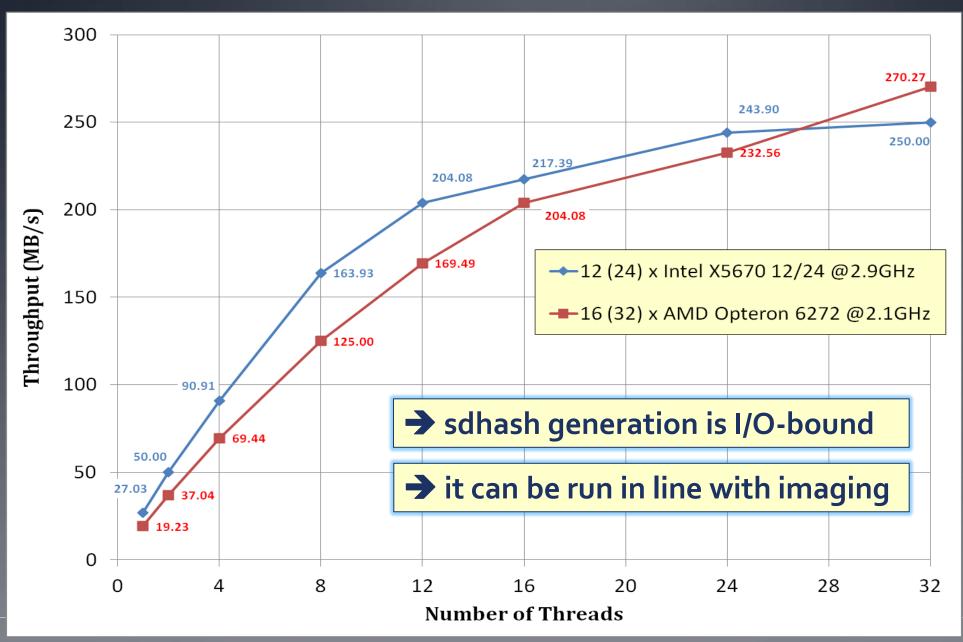
Similar files (shared content/format)


Similar drives (shared blocks/files)

Given two binary objects, detect similarity/versioning

Similarity here is purely syntactic;

 \circ Relies on commonality of the binary representations.


Common solution: similarity digests

All correlations based on bitstream commonality

The M57 Case Study Using sdhash for triage

sdhash-2.2 generation rates

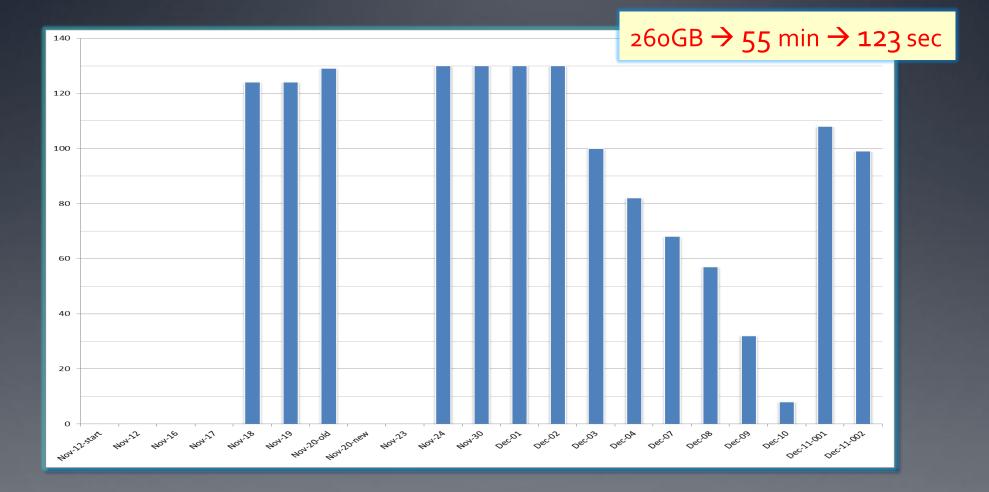
sdhash generation times (M57)

Data Set	Size (GB)	Time (\min)	Rate (MB/s)
HDD	1,423.0	168.00	143
RAM	107.0	10.70	166
Network	4.6	0.40	196
USB disk	4.1	0.45	155
Kitty	0.2	0.08	45
Total	$1,\!538.9$	179.63	143

Dell PowerEdge R710 server

- 2 x Intel Xeon CPUs @2.93GHz six-core with H/T 12(24) threads
- \circ 72GiB of RAM @800MHz

Scenario #1: Contraband


Setup:

 From the detective reports in the scenario, there is reason to suspect that one of M57's computers (Jo's) has been used in the contraband of "kitty porn".

> Questions:

- Were any M57 computers used in contraband?
- If so, when did the accident happen?
- Is there evidence of intent?
- How was the content distributed?
- Was any of the content sent outside the company network?

Query 1: Search Jo's HDD for kitty images

Jo's computer: Number of instances found by date

Query 2: What processes were running?

Search Jo's RAM for traces of installed executables

		15	B min
12/03		L C	5
/Downloads/TrueCrypt Setup 6.3a.exe	092		
/TrueCrypt Format.exe	090		
/TrueCrypt Setup.exe	092		
/TrueCrypt.exe	092		
12/04			
/Downloads/TrueCrypt Setup 6.3a.exe	063		
/TrueCrypt Setup.exe	063		
12/09			
/Downloads/TrueCrypt Setup 6.3a.exe	084		
/TrueCrypt Format.exe	079		
/TrueCrypt Setup.exe	084		
/TrueCrypt.exe	090		
12/10			
/TrueCrypt.exe	092		
12/11 - pre-raid			
/TrueCrypt Format.exe	086		
/TrueCrypt.exe	079		

Scenario #2: Eavesdropping

Setup:

 It is suspected that somebody is spying on the CEO (Pat) electronically.

Plan?

- Search for potentially rogue processes that might have been introduced on his computer.
- $\circ~$ First HDD image is clean and serves as baseline.

Eavesdropping timeline

11/16, [71] not in baseline	20 min			
Present: Java, Firefox, python, mdd_1.3.exe				
11/19, [95] not in baseline Acrobat Reader 9 installed or updated,				
including Adobe Air. 18 other programs from 11/16 still present.	12/03, [649] AVG has been updated.			
11/20, [289]	XP Advanced Keylogger appears:			
Windows Update run: many new dlls in the _restore and SoftwareDistribution folders.	XP Advanced/DLLs/ToolKeyloggerDLL.dll 087 XP Advanced/SkinMagic.dll 027			
11/23, [561] Windows Update has run	XP Advanced/ToolKeylogger.exe02412/07, [460]			
<pre>11/30, [274] Likely a Brother printer driver installed. Acrobat/Firefox still present.</pre>	XP Advanced Keylogger is no longer here.			
	RealVNC VNC4 has been installed and run: RealVNC/VNC4/logmessages.dll 068 RealVNC/VNC4/winvnc4.exe 046 RealVNC/VNC4/wm_hooks.dll 023			
	12/10, [1240] AVG updated. IE8 and Windows updated. VNC still present.			
	12/11, [634] VNC present.			

Scenario #3: Corporate espionage

≻ Setup:

 There is suspicion that somebody has leaked company secrets.

> Plan?

 \circ Search RAM snapshots for interesting processes

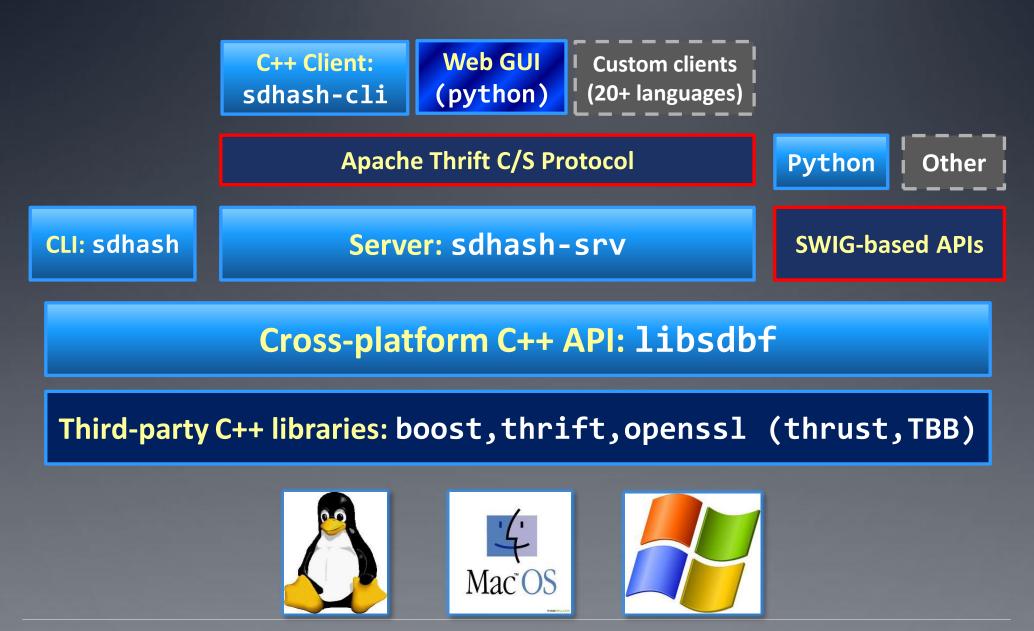
Scenario #3: Findings

> RAM

- "Cygnus FREE EDITION" hex editor
 - On 11/24, 11/30, 12/02, 12/03, and 12/10;
- "Invisible Secrets 2.1"
 - 11/19, 11/20, 11/24, 11/30, and 12/02.
 - blowfish.dll, jpgcarrier.dll, bmpcarrier.dll
 - → likely stego tool

➢ USB

- o insecr2.exe
- o /microscope.jpg
- o /microscope1.jpg
- o /astronaut.jpg
- o /astronaut1.jpg
- o /Email/Charlie ... Sent_astronaut1.jpg
- o /Email/other/Charlie_..._Sent_microscope1.jpg


31 min

M57 Conclusions

- Using sdhash, we can outline the solution of all three cases in about 120 min of extra processing.
 - This assumes HDD/RAM hash generation while cloning.
 - This could be further improved by running the queries in R/T in parallel with acquisition.
- The tool enables differential analysis that is simple, fast, robust, and generic.
 - \rightarrow Most processing can run in parallel with acquisition.
 - → In effect, it can replace carving/indexing during triage.
 - ➔ It does not require much expertise to apply; results are intuitive.
 - The analysis can be highly automated; higher-level analysis can be built on top.

Development Status

Architecture

Availlability

sdhash.org

- Source
- Windows exe
 - 32-/64-bit executables
- o Linux
 - rpm/deb packages
- API documentation
- Repository
- Papers/presentations

sdhash home

sdhash@roussev.net

sdhash-2.3 (alpha)

Release: 08/06/2012

Source: zip (md5) / tarball (md5) / Apache Thrift 0.8.0 (64-bit)

sdhash-2.2 (stable)

Release: 07/02/2012

- Source: zip (md5) / tarball (md5)
- Pre-built binaries
 - MS Windows (beta): 32-bit / 64-bit
 - Ubuntu 12.04LTS: 32-bit / 64-bit / Apache Thrift 0.8.0 (64-bit)
 - Fedora 17: 32-bit / 64-bit
- = Installation: Linux / Mac / Windows (native)
- Repository is HERE
- License: Apache 2.0

sdhash-2.2 comparison performance

Small file comparison (1 core, Intel X5670)

10KB	vs.	10KB	0.0061	ms
100KB	vs.	100KB	0.0125	ms
1MB	vs.	1MB	0.4300	ms
10MB	vs.	10MB	41.0000	ms

> Large file/streaming comparison (12 cores) in seconds

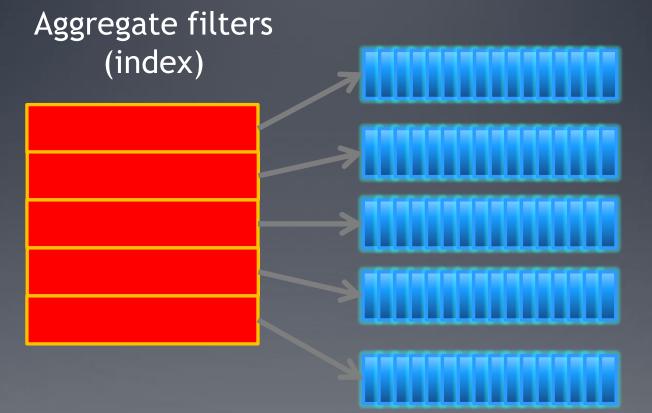
	100MB	125MB	150MB	200MB	500MB	1000MB
100MB	0.76	0.93	1.00	1.36	3.53	6.61
125MB	0.93	0.96	1.30	1.84	4.10	8.60
150MB	1.00	1.30	1.58	2.28	5.33	10.30
200MB	1.36	1.84	2.28	3.00	7.10	13.80

Todo: Scaling up to NSRL

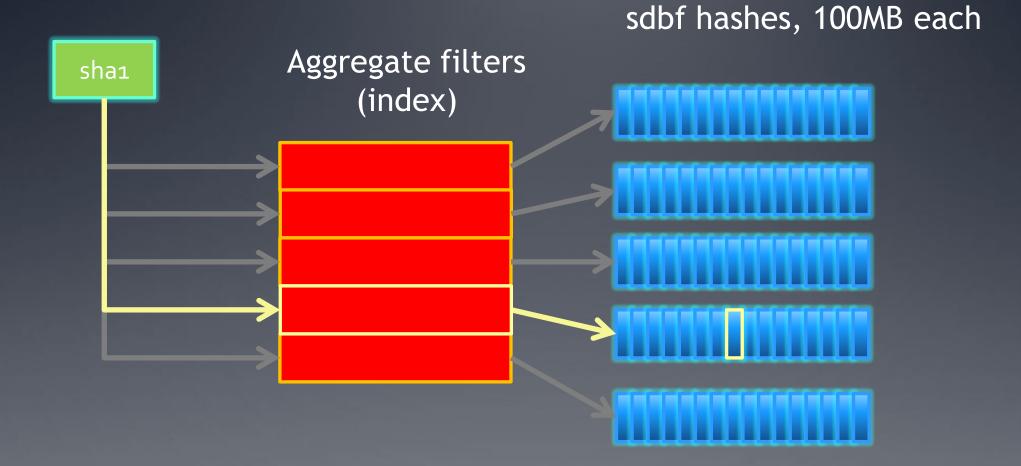
➤ Goal:

Maintain R/T performance (100-150 MB/s) with 1TB reference set.

> Approach:


• Pre-filtering/indexing using extra Bloom filters

Estimated cost:


- Approximately 2.5% extra; i.e. increase from 2.5 to 5% of reference data
- 50GB per TB of data
- Requires RAM-optimized server (e.g. 256GB \rightarrow ~\$7k)

Scaling up to NSRL (2)

Scaling up to NSRL (2)

Todo list

> libsdbf

- Rewrite parallelization using *thrust, tbb, thrift,* or similar
- Implement pre-filtering/indexing
- GPU acceleration

> sdhash

- More command line options/compatibility w/ssdeep
- Pcap front end
 - payload extraction, file discovery, time-lining

> sdhash-srv/sdhash-cli

- Multi-server deployment
- o GUI

Further Development

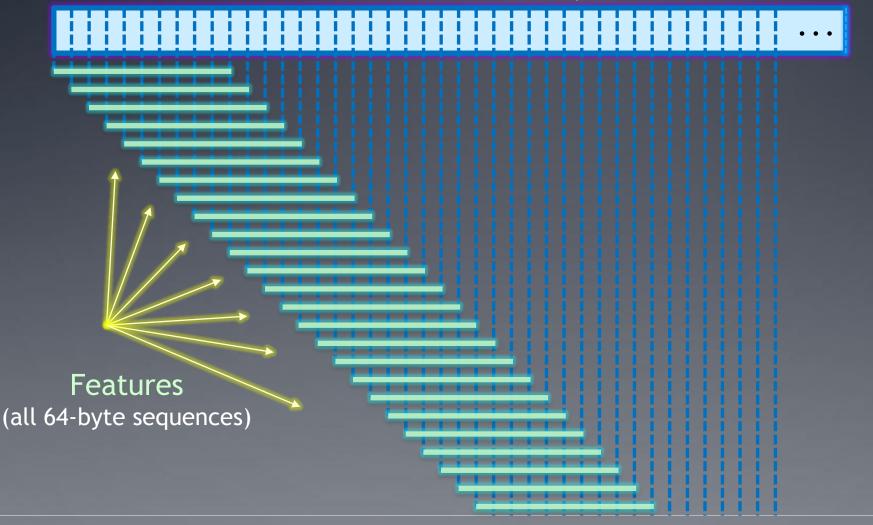
Integration w/ RDS

- *sdhash-set*: construct *SDBF*s from existing SHA1 sets
 - Compare/identify whole folders, distributions, etc.
- Structural feature selection
 - E.g., exe/dll, pdf, zip, ...
- Optimizations
 - o Skipping
 - Under min continuous block assumption
 - Cluster "core" extraction/comparison
- Representation
 - Multi-resolution digests
 - New crypto hashes
 - Data offsets

Thank you!

http://sdhash.org

> sdhash tutorial: Wed, Aug 8 @3pm

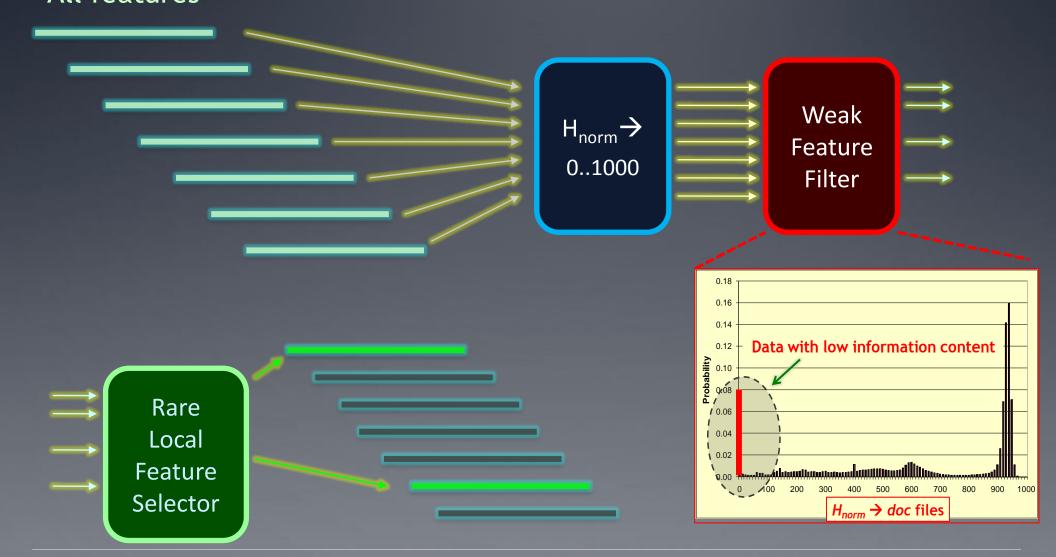

> Vassil Roussev vassil@roussev.net

Similarity digests Overview

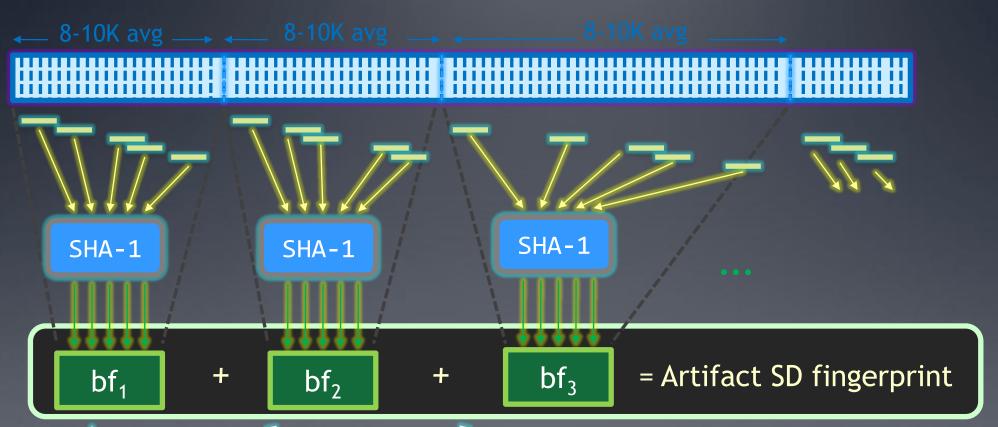
Generating sdhash fingerprints (1)

Digital artifact

(block/file/packet/volume) as byte stream

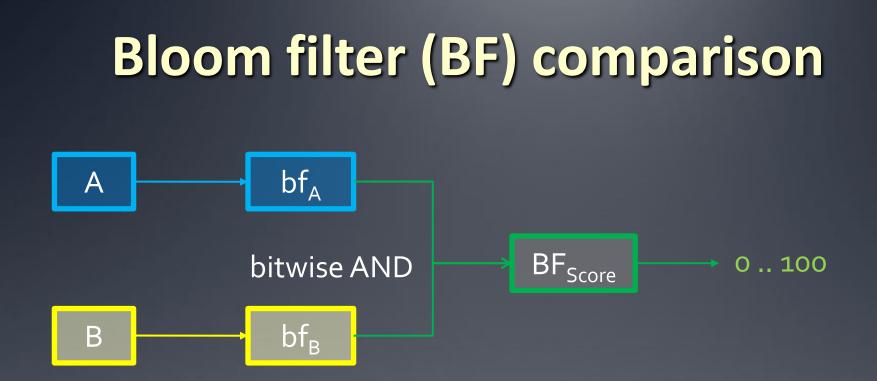

Generating sdhash fingerprints (2)

Digital artifact



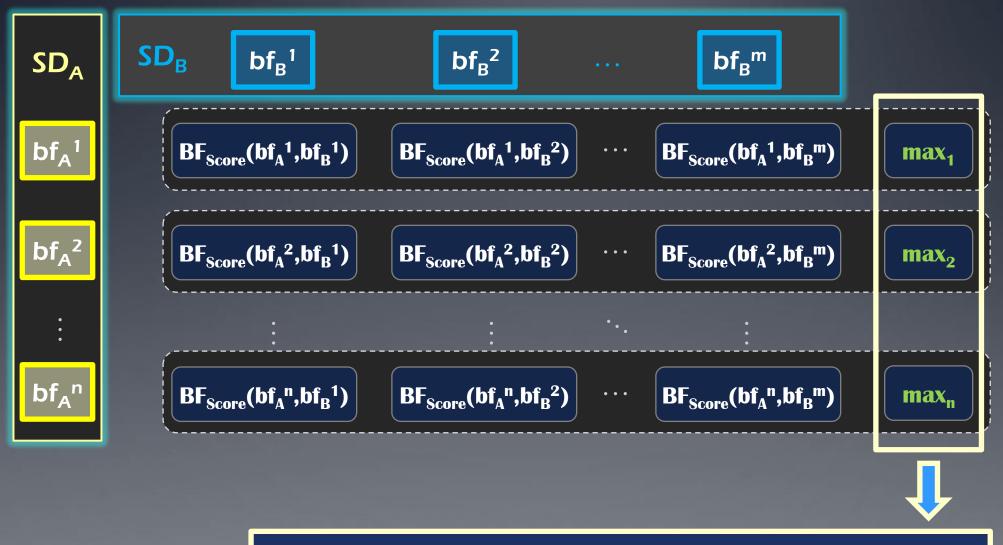
Select characteristic features (statistically improbable/rare)

Generating sdhash fingerprints (3) Feature Selection Process


Generating sdbf fingerprints (4)

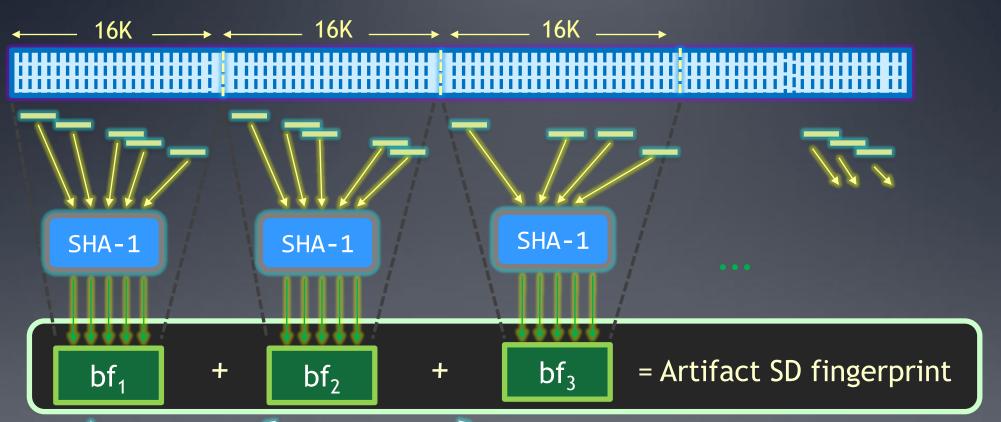
Sequence of Bloom filters (sdbf)

Bloom filter


local SD fingerprint
 256 bytes
 up to 128/160 features

Based on BF theory, overlap due to chance is analytically predictable.

Additional BF overlap is proportional to overlap in features. BF_{Score} is tuned such that $BF_{Score}(A_{random}, B_{random}) = 0$.


SDBF fingerprint comparison

SD_{Score}(A,B) = Average(max₁, max₂, ..., max_n)

Scaling up: Block-aligned digests & parallelization

Block-aligned similarity digests (sdbf-dd)

Sequence of Bloom filters (sdbf-dd)

Bloom filter

Iocal SD fingerprint

□ 256 bytes

□ up to 192 features

Advantages & challenges for blockaligned similarity digests (sdbf-dd)

> Advantages

- Parallelizable computation
- Direct mapping to source data
- Shorter (1.6% vs 2.6% of source)
- → Faster comparisons (fewer BFs)

> Challenges

- Less reliable for smaller files
- o Sparse data
- Compatibility with sdbf digests

Solution

- Increase features for sdbf filters: $128 \rightarrow 160$
- Use 192 features per BF for sdbf-dd filters
- Use compatible BF parameters to allow sdbf ⇔ sdbf-dd comparisons

sdhash 1.7: sdbf vs. sdbf-dd accuracy

Query size	FP rate	TP rate	Query size	FP rate	TP rate
1,000	0.1906	1.000	2,000	0.0006	0.997
1,100	0.0964	1.000	2,200	0.0005	1.000
1,200	0.0465	1.000	2,400	0.0001	1.000
1,300	0.0190	1.000	2,600	0.0001	0.997
1,400	0.0098	1.000	2,800	0.0000	1.000
1,500	0.0058	1.000	3,000	0.0000	0.999
1,600	0.0029	0.999	3,200	0.0000	0.998
1,700	0.0023	0.999	3,400	0.0000	0.998
1,800	0.0013	0.999	3,600	0.0000	1.000
1,900	0.0010	0.998	3,800	0.0000	0.998