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Bytewise approximate matching is a relatively new area within digital forensics, but its impor-
tance is growing quickly as practitioners are looking for fast methods to screen and analyze the
increasing amounts of data in forensic investigations. The essential idea is to complement the

:?;ﬁ:;lgty hashing use of cryptographic hash functions to detect data objects with bytewise identical represen-
sdhash tation with the capability to find objects with bytewise similar representations.
mrshov2 Unlike cryptographic hash functions, which have been studied and tested for a long time,
ssdeep approximate matching ones are still in their early development stages and evaluation
FRASH methodology is still evolving. Broadly, prior approaches have used either a human in the
loop to manually evaluate the goodness of similarity matches on real world data, or
controlled (pseudo-random) data to perform automated evaluation.
This work’s contribution is to introduce automated approximate matching evaluation on
real data by relating approximate matching results to the longest common substring (LCS).
Specifically, we introduce a computationally efficient LCS approximation and use it to
obtain ground truth on the t5 set. Using the results, we evaluate three existing approxi-
mate matching schemes relative to LCS and analyze their performance.
© 2014 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction One of the most common processing methods is known

file filtering, which-in its basic form-consist of computing

One of the biggest challenges facing a digital forensic the crypto hashes for all files on a target device, and

investigation is coping with the huge number of files that
need to be processed. This is a direct result of the expo-
nential growth in our ability to store digital artifacts and
the overall trend of digitizing all forms of information, such
as text, documents, images, audio and video. Consequently,
a critical requirement of modern forensic investigative
tools is the ability to perform large-scale automated
filtering and correlation of data.

* Corresponding author.
E-mail addresses: frank.breitinger@cased.de (F. Breitinger), vassil@
roussev.net (V. Roussev).
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comparing them to a reference database. Depending on the
underlying database, files are either filtered out (e.g., files of
the operating system) or filtered in (e.g., known offensive
content). For example, NIST maintains a large public data-
base of known content-the NSRL (NIST Information
Technology Laboratory, 2003-2013).

Reference databases based on crypto hashes provide
precise and reliable results; however, they can only identify
content based on identity. This makes them fragile and
difficult to maintain as digital artifacts (such as code) get
updated on a regular basis, making the reference data
obsolete. Therefore, it is useful to have algorithms that
provide approximate matches that can correlate closely
related versions of data objects.

1742-2876/© 2014 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://
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Generally, an approximate matching algorithm extracts
features of an input and produces a similarity digest; the
digests can then be compared to determine a measure of
similarity. Depending on the level of at which the algorithm
operates, one distinguishes between bytewise, syntactic- or
semantic approximate matching Breitinger et al. (2014).

Semantic matching operates at the highest level of
abstraction and provides results that are closest to human
perceptual notions of similarity. Syntactic matching relies
on purely syntactic rules to break up the data representa-
tion into features, e.g., cutting a header of a fixed byte size.
Bytewise matching relies only on the sequence of bytes that
make up a digital artifact, without reference to any struc-
tures (or their interpretation) within the data stream. In
what follows, we focus on bytewise approximate matching.

While crypto hashes are well-known and established in
various fields of computer science, approximate matching
is a rather new area and missing standardize processes for
testing and evaluating these algorithms. Breitinger et al.
(2013a) presented a test framework called FRASH which
performs efficiency as well as sensitivity & robustness tests.
Some time later FRASH was extended by a precision & recall
test on synthetic data (Breitinger et al., 2013b).

The main contribution of this work is the development
of automated precision and recall tests on real world data.
Compared to synthetic data, real world data yields more
realistic results and allows a better characterization of the
behavior of approximate matching algorithms. For this test,
we first created a ground of truth wherefore we identified
the similarity of objects based on an own metric called
approximate longest common substring (aLCS). We validate
our aLCS results by comparing them against the traditional
longest common substring (LCS). In a second step, we
analyze the false positive and false negative rates of the
approximate matching algorithms with respect to the
ground truth.

The rest of the paper is organized as follows: Sec. 2 in-
troduces the necessary background and related work. Our
evaluation methodology as well as some implementation
details are provided in Sec. 4. The core of this paper is Sec. 5
where we present our experimental results. Sec. 6
concludes the paper.

Background & related work

Hash functions (e.g., SHA-1 Gallagher and Director
(1995)) have a long tradition and are applied in various
fields of computer science like cryptography (Menezes
et al., 2001), databases (Sumathi & Esakkirajan, 2007, Sec.
9.6) or digital forensics (Altheide and Carvey, 2011, p. 56ff).
This is in contrast to bytewise approximate matching which
probably had its breakthrough in 2006 with an algorithm
called context triggered piecewise hashing (CTPH). In the
following we give a brief overview of bytewise approximate
matching and explain how these algorithms are tested.

Bytewise approximate matching algorithms
The introduction of approximate matching for forensic

purposes dates back to 2006 when Kornblum (2006) pre-
sented an approach called context triggered piecewise

hashing and Roussev et al. (2006) introduced similarity
hashing. Subsequently a small community came up which
follows the challenges of approximate matching (a.k.a.
‘similarity hashing’). To date, several different approaches
have been published, all with different strength and
weaknesses.

Besides the two most prominent implementations
ssdeep and sdhash, a couple of further algorithms raised.
However, most of them are very limited. For instance,
MinHash (Broder, 1997) and simHash (Sadowski and
Levin, 2007) allow to detect small changes (up to several
bytes) only, bbHash is too slow (2 min for 10 MiB),
mvHash-B is not file type independent. Hence, in what
follows we briefly describe the three most promising ap-
proaches with respect to digital forensics (a detailed
description is beyond the scope of this paper as we treat
them black boxes for testing purposes).

ssdeep

The ssdeep tool (') was introduced as a proof of
concept implementation of context triggered piecewise
hashing (CTPH) and has gained widespread acceptance. It
was presented by Kornblum (2006) and is based on the
spam detection algorithm from Tridgell (2002-2009). The
basic idea is behind it is simple: split an input into chunks,
hash each chunk independently and concatenate the chunk
hashes to a final similarity digest (a.k.a. fingerprint).

In order to split an input into chunks, the algorithm
identifies trigger points using a rolling hash (a variation of
the Adler-32 function) which considers the current context
of seven bytes. Each chunk is then given to the non-
cryptographic hash function FNV Noll (1994-2012).
Instead of using the complete FNV hash, CTPH only takes
the least significant 6 bits which is equal to one Base64
character. Thus, two files are similar if the have common
chunks.

Follow up efforts (Chen and Wang, 2008; Seo et al.,
2009; Baier and Breitinger, 2011) have targeted incremen-
tal improvement of the algorithm, however, none of these
implementations have been made available for public
testing and evaluation.

sdhash

The sdhash tool> was introduced four years later
Roussev (2010) in an effort to address some of the short-
comings of ssdeep. Instead of dividing an input into
chunks, the sdhash algorithm picks statistically improb-
able features to represent each object. A feature in this
context is a byte sequence of 64 bytes, which is hashed
using SHA-1 and inserted into a Bloom filter (Bloom, 1970).
The similarity digest of the data object is a sequence of 256-
byte Bloom filters, each of which represents approximately
10 KB of the original data. The tool also supports block
mode (Roussev, 2012) in which the input is split into fixed-
size chunks (by default 16 KiB) and the best features are
selected from each block.

1 http://ssdeep.sourceforge.net (last accessed 5 Dec. 2013).
2 http://sdhash.org (last accessed 5 Dec. 2013).
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mrsh-v2

mrsh-v2 was proposed by Breitinger and Baier (2012)
and is based on MRS hash (Roussev et al., 2007) and com-
bines design ideas from both ssdeep and sdhash. The
overall approach is to divide an input into chunks and hash
each chunk based on a rolling hash (ssdeep) and combine
it with sdhash-like use of Bloom filters for the similarity
digest.

Approximate matching evaluation

In order to facilitate the systematic and reproducible
testing of bytewise approximate matching, (Breitinger
et al, 2013a) introduced an open source, extensible
framework called FRASH. It is implemented in Ruby 2.0,
and the current version provides facilities for evaluating
three different aspects of an approximate matching algo-
rithm’s performance (some of these build on ideas from
(Roussev, 2011)).

o Efficiency:

- generation efficiency measures the execution time
taken by the algorithm to process an input of a given
size and generate the similarity digest;

- comparison efficiency measures the time taken to
perform the similarity digest comparisons;

- space efficiency (compression) measures the size of
the digest as function of the input length.

e Sensitivity and robustness:

- fragment detection is a basic sensitivity measure,
which gives the smallest fragment for which the
similarity tool reliably correlates the fragment and
the original file;
single-common-block correlation provides a related
sensitivity measure, which calculates the smallest
object that two files need to have in common for the
algorithm to reliably correlate them;
alignment robustness analyzes the resilience of the
algorithm by measuring the impact of inserting
random byte sequences at the beginning of an input
on its correlation results;
random noise resistance analyzes the impact of
random input edits on the correlation results of the
algorithm.

e Precision and recall tests quantify the detection error
trade-off between false positive and false negative rates
(a.k.a. ROC) for the algorithms.

Problem description

Critical in any evaluation process is the establishment of
ground truth; for our subject area, this means establishing
whether or not two digital objects (files) are similar. Prior
work, such as (Roussev, 2011), has approached this problem
from two perspectives: automated controlled tests based
on pseudo-random data, and manual user evaluation of
positive results.

The main advantage of controlled experiments is that
ground truth is constructed and, therefore, precisely
known. This allows randomized tests to be run completely
automatically and the results to be interpreted with

standard statistical measures. The obvious downside is that
much of real data is far from random so the applicability of
the result to the general case remains uncertain. Never-
theless, running controlled tests in this manner is quite
useful in characterizing algorithms’ baseline capabilities.

The main advantage of user evaluation is that it provides
results on real data as it would be experienced by an
investigator. The downside is that the process is manual and,
therefore, not suitable for large-scale testing. Also, the re-
sults include a degree of subjective judgment on whether
two objects are, in fact, similar. Finally, there is also the
problem of how to treat objects that exhibit non-trivial
commonality that is not normally observable by the user
(the significance of such findings is inherently case-specific).

In this work, we seek to bridge the gap between the two
approaches by providing the means to perform fully auto-
mated testing on real data. In order to solve this challenge,
we need a practical algorithm that can establish whether
two (arbitrary) data objects are similar, or not.

Recall that we are interested in byte-level similarity,
which means that we do not consider any syntactic, or
semantic features in our analysis. In other words, the arti-
facts are being compared as strings and similarity is defined
as the presence of common substrings.

Given this framework, it is natural to consider the
longest common substring (LCS) as starting point for
defining the similarity of two objects. For instance, consider
the strings ABABBCADEF and ABAECADEBF-their longest
common substring is CADE; since its length is 40% of the
length of the strings, we could use that as a baseline
measure of similarity. In general, it is clear that there could
be additional sources of commonality, so LCS should be
considered a lower bound.

One problem with using LCS is that the algorithm has
quadratic time complexity-O(mn), where m and n are the
string lengths. Given that files could be quite large, and the
number of test cases grows quadratically as a function of
the number of files in the test set, the use of an exact al-
gorithm quickly becomes infeasible. Therefore, we created
a tool which outputs a good approximation of the longest
common substring and, by design, provides a lower bound
on LCS.

Approximate longest common substring

The basic idea of the approximate longest common
substring metric (aLCS) is not to compare files byte by byte
but rather in variable sized chunks. To pick the chunks, we
use a derivative of the standard approach to data finger-
printing by random polynomials pioneered by Rabin.
Specifically, we borrow the rolling hash from ssdeep and
adjust the parameters such it produces chunks of 40 bytes,
on average. Each chunk is hashed with the FNV-1a hash
(Noll, 1994-2012) and the sequence of all hash values form
the basis for the aLCS signature. Besides the hash values, we
also store the entropy and length for each chunk and the
resulting sequence forms the alcs-digest.

Given two digests, it is straight forward to construct an
estimate of the LCS; a reference implementation is publicly
available at http://www.dasec.h-da.de/staff/breitinger-
frank/.
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Table 1

Empirical pdf & cdf for d,
X 0 1 2 3 4 5 10 15 20
Pr{d, = X} 0.8869 0.0449 0.0155 0.0040 0.0047 0.0116 0.0062 0.0001 0.0000
Pr{d. < X} 0.8869 0.9318 0.9473 0.9513 0.9561 0.9677 0.9834 0.9992 0.9999

Implementation details

The tool is implemented in C and separated into three
steps: reading, hashing and comparison, which are
declared in the main function. It has a command line
interface and is run against all files in a target directory:
./aLCs <dir>.

First, all files in dir are read. Out of the file names, we
create ‘hash-tasks’ which are added to a thread pool. A
hash-task contains the path to a file and denotes ‘hash file
Xx'. The tasks are run in parallel on the available level of
parallelism (CPU cores). Once all alcs-digests are created, we
perform an all-against-all comparison, which launches
parallel compare-tasks (compare file; against file;). The
results are serialized to standard output.

The reference implementation has three main settings
configurable in header/config.h. MIN_LCS is the mini-
mum L, length which is printed to stdio and is by default
0 (all comparison are printed). The THREAD_POOL_-
QUEUE_SIZE is the length of the queue and should be
fileamount-(fileamount — 1)/2. NUMTHREADS is the amount
of threads which should be equal to the amount of cores.

Verification of ground truth

To verify the correctness of our approximate longest
common substring, we compared the results against LCS
for some real world files. In order to solve this challenge, we
implemented a parallelized LCS tool written in C. The
output is a summary file similar structured then our aLCS
output: filel | file2 | LcsS. A small ruby script is used to
compare LCS-summary and aLCS-summary.

Our subset consists of 201 randomly selected files. We
compared these files using aLCS as well as LCS and finally
compared both summaries. All 20,100 comparisons yield a
true positive, i.e., 0 < alcs < Ics. We also consider the dis-
tribution of the differences between the LCS and aLCS
scores. Specifically, we define d; for files f; and f, as follows:

B les(fi,f2) — ales(fi, f2) .
d; = [100 x min(i . o) 1,d,€0,1,...,100.

In other words, we consider the score difference relative
to the size of the smaller of the two files, and build the
empirical distribution in Table 1. As we can see, upwards of
95% of the observed differences do not exceed 3% of the size
of the smaller files — we consider this a reasonable starting
point for our purposes (further research may refine this). If
anything, this should give tools a slight boost as the avail-
able commonality would be underestimated.

Methodology and implementation

This section first presents our approximate ground truth
in Sec. 4.1 followed by the test methodology in Sec. 4.2. The

last part of this chapter presents the used terminology,
notations and definitions.

Approximate ground truth

Our approximate ground truth is a text file of unordered
pairs of files (fy, f,) structured like follows:

filenamel | sizel |filename2 |size2 |L_a|entropy
|L_r

1.pdf | 98781 | 2.pdf | 1852712500 |4.66|0.03

3.pdf | 16661 |4.pdf | 185302077 |1.75]0.12

where L, is the absolute result (a lower bound on the
length of the longest common substring), entropy is the
information content of the substring and L; is the relative
result. More precisely,

L, = alcsq(f1,f2), where 0 < L, < min(|fi], [f]). (1)
L = [100 x ——L ] where 0 <L, <100 2)
' min(lfy], |[f2])” -

where |f] denotes the file size in bytes.

For instance, the first line states that file1 and file2 have
an absolute length L, = 2500 bytes which corresponds a
relative length L, = 0.03 = 3% with an entropy of 4.66. The
second line shows a special case with a very low entropy
which could be an indicator that both files share mostly
Zeros.

Test methodology

Although, in theory, any two strings sharing a substring
are related, we place a more practical lower bound on the
minimum amount of commonality to declare two files
related. Specifically, we require that the absolute size L is
at least 100 bytes and that the relative result L. exceeds 0.5%
of the size of the smaller file. More formally, the true pos-
itive function TPy (fif2) is defined as’

TPalcs(fhfZ)ELa > 100 A Lr > 1.
Clearly, the true negative function

TNulcs(fl’fZ) = _‘TPalcs(fl-,fZ)~

Terminology, notations and definitions
We follow a fairly standard information retrieval

framework for evaluating the quality of the results pro-
duced by approximate matching tools.

3 Note: result of L, is rounded and thus 0.5 is equal to 1.
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Approximate matching score: Sy(f1,f2) is the result of
comparing two files using an approximate matching func-
tion h, where he{ssdeep, mrsh, sdhash} and 0 < S; < 100.

Threshold (t) of significance: A score parameter, used in
approximate matching to separate matches from non-
matches.

Match: Two files, f; and f,, are matched using approxi-
mate matching algorithm h < Sp(f1.f2) > t.

True positive TPy:

Tpllm7ﬁ7t)ETPalcs(ﬂyf2) = true/\Sh(f],fz) >t
True negative TNy:
Tphmvﬁvt)ETNalCS(ﬁvﬁ) = tme/\sh(fhﬁ) S t

False positive FPy:

TP, (f1,f2,t) =TNaes (fi, f2) = truenSy(fi,fo) >t

False negative FNp:

TPh(f]7f27t)ETPﬂlCS(flvf2) = trUE/\Sh(fhfz) < t

Precision Py:

P — TP,
"7 TP, + FP,
Recall Ry:
R — TP,
"~ TP, + FN,
True negative rate TNR:
TN,
=T
Accuracy Ap:
. TP, + TNy,
" = TP, + TN, + FP, + FN,,
F-score Fg:
recision x recall
Fﬁ:<1+ﬁz)><2p ”x
B x precision + recall

The F-score is a generic measure combining precision
and recall into a single number. We use three different
versions based on the § parameter: Fy,F>,Fy5. The first one
weighs precision and recall equally, the second favors recall
over precision, and the last one favors precision over recall.

Matthews correlation coefficient MCC:

TP x TN — FP x FN
/(TP FP)(TP + FN)(IN + FP)(IN + FN)

where MCCe[-1,1].

The MCC is a correlation coefficient between observed
and predicted binary classifications; it is included here as it
is considered a balanced measure even for classes of sub-
stantially different sizes (as is our case). A result of +1
represents perfect prediction, whereas —1 indicates perfect
disagreement; O indicates that the classifier offers no
advantage over a random guess.

MCC =

Experimental results

This section presents the results from applying our test
methodology to analyze the performance ssdeep, mrsh-
v2 and sdhash.

The assessment is based on the t5 corpus first used in
(Roussev, 2011), which contains 4457 files with a total
size of 1.8 GB (http://roussev.net/t5/). Thus, the average
file is =400 KB and the file type distribution is given in
Table 2.

One challenge that may not be immediately obvious is
that a complete, all-pairs comparison run requires a non-
trivial number of comparisons-a set of n files results in
n(n — 1)/2 comparisons, which corresponds to 9,930,196
comparisons for the t5 set. Although it takes only =425 ms
per comparison, such work would clearly be impractical
without parallel execution. Fortunately, such a workload is
readily parallelizable and our implementation takes full
advantage of that. In our tests, a 48-core, 2.6 GHz AMD
Opteron server needed 1466 min (=24 hours) to generate
and compare all alcs-digests.

The rest of this chapter is divided into the following
parts. First, we give a general overview of the detection
rates of the different approaches. The next three sections
discuss the false positives, false negatives and true posi-
tives, respectively. Finally, the last section shows the dif-
ferences in performance for the containment and
resemblance usage scenarios.

Baseline results

First, we present the baseline case where t = 0. In other
words, we define any approximate matching score greater
than zero as a positive result, and any zero score as a
negative result. This is the lowest barrier for matching al-
gorithms to jump over as they simply need to match the
positive/negative behavior of the baseline aLCS measure,
with no additional expectations of the exact value of the
score.

Using the definitions from 4.3, the observed statistics
from the experiments are shown in Table 3 and lead us to
the following initial observations:

e Precision. In absolute terms, sdhash yields the largest
number of true positives, while ssdeep is with the
lowest number of false positives; mrsh-v2’s true posi-
tives fall right in the middle but the false positives are
much higher than the other two. This results in
reasonably high precision for ssdeep and sdhash, and
relatively low one for mrsh-v2.

e Recall. Due to the high number of false negatives across
the board, the recall rates are quite low. In relative
terms, sdhash and mrsh-v2 hold a considerable
advantage over ssdeep.

Table 2
Number of files per file type: t5 corpus.

jpg gif doc xls ppt html pdf txt
362 67 533 250 368 1093 1073 711
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Table 3
Baseline approximate matching results for t=0.
ssdeep mrsh-v2 sdhash

TP 951 3679 5474
FP 15 23,453 790
TN 9,472,047 9,448,609 9,471,272
FN 457,183 454,455 452,660
Precision 0.98447 0.13560 0.87388
Recall 0.00010 0.00039 0.00058
TNR 1.00000 0.99752 0.99992
Accuracy 0.95396 0.95187 0.95434
F 0.00020 0.00078 0.00115
F 0.00013 0.00049 0.00072
Fos 0.00050 0.00192 0.00288
MCC 0.04412 0.02232 0.09913

e TNR & Accuracy. Due to the very high ratio of negative to
positive results, these measures do not provide any
meaningful differentiation among the tools.

e F-scores. In these combined measures, sdhash holds a
consistent 1.47 — 1.50x performance advantage over
mrsh-v2 and 5.5 — 5.75x over ssdeep.

e MCC. The measure also puts sdhash’s performance
ahead by a 2.25 — 4.5x margin; interestingly, mrsh-v2
and ssdeep swap places suggesting that mrsh-v2's
lower precision is having a bigger effect on MCC than on
F-scores.

Analysis of false positives

Let us now consider the false positive behavior of the
tested tools in detail. Fig. 1 shows the empirical probability
distribution of the approximate matching score Sy, scores
for which the respective tool has yielded a false positive.
Both mrsh-v2 and sdhash show a highly desirable
behavior-the FP scores are heavily concentrated close to
zero. Indeed, the cumulative probability for scores in the 1-
10 range constitute 99.1% and 96.6% of all FP for mrsh-v2
and sdhash, respectively; ssdeep’s result are uniformly
distributed throughout the 32-85 range.

Analysis of false negatives

The breakdown of false negative results show virtually
identical distribution of L, scores for all three tools. This is
clearly due to the overwhelming number of negatives,
which render any differences across tools insignificant. The
good news is that, although the false negatives are sub-
stantial in number, their L, scores are heavily clustered
around zero. This means that we can put a realtively tight
and useful bound on what approximate matching tools
might miss.

For example, assume that one of the tools, sdhash,
returns a score of zero (Ssgnash = 0). Given its negative pre-
dictive value NPV = TN/(FN + TN) = 0.954, the result will be
TN in 95.4% of the time. Whenever it is not (4.6%), Fig. 2 tells
us that ~98% of the time the L, score would not exceed 15.
Put together, the two observations tell us that Ssghash = 0

4 Out of the 4.6% there are 98% under 15. Thus, 95.4% + 4.6%-
0.98 = 99.91%.

1.000
ssdeep O mrsh M sdhash

0.100
0.010

Wl 1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Score

Empirical probability (log scale)

Fig. 1. Empirical probability distribution of L, scores for approximate
matching false positives.

implies99.91%* certainty that the L, score does not exceed
15.

Since the NPV for all three tools are similar, we can
conclude that negative results from any of the tools are
significant in that they allow us to bound the level of
commonality that we may be missing with a very high level
of certainty.

Analysis of true positives

The next question we would like to explore is—what is
the correlation between true positive results (S;) and the
ground truth results (L;)? To understand this behavior, we
build the empirical probability distribution of the difference
between the true score (as defined by L;) and the similarity
score; that is, L, — Sy, for he {ssdeep, mrsh, sdhash} (Fig. 3).

We can see that mrsh-v2's comes closest to having a
classical Gaussion distribution that is symmetrical and
fairly tight around the mean of zero; this implies that
mrsh-v2’s positive results have about equal chance of

1.00

10, 0.8906
15,0.9816
0.90

8,0.8163 9, 0.8597
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6,0.7066 7,0.7590
0.70
5,0.6374
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4,0.5632

050 3,0.4770
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7
]
i
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Fig. 2. Empirical probability distribution of L. scores for approximate
matching false negatives.
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being smaller, or larger than ground truth. Next, sdhash’s
distribution also has a bell-like shape but has a "bulge”
and slight bias to the right of zero, implying that sdhash
scores are somewhat more likely to be smaller than alcs’s
score. Finally, ssdeep’s distribution is massively skewed
to the left of zero (89% of the mass) and shows no
particular characteristic shape; still, the graph it tells us
that we can view ssdeep’s score as an upper bound on
the alcs result.

Containment vs. resemblance

Having characterized the overall performance of the
tools, we consider their behavior under the two basic usage
scenarios-resemblance and containment. Following Brod-
er's ideas (Broder, 1997), we try to approximate the
informal notions of ‘roughly the same’ (resemblance) and
‘roughly contained inside’ (containment). For example,
comparing two executable files similar in size is likely a
resemblance query, whereas comparing a file against a
RAM snapshot is clearly a containment query. However, we
have no precise guidance as to where to draw the line be-
tween the two scenarios.

For this work, we chose a criterion based on the ratio of
the file sizes. Namely, if the size of the bigger file is at least
two times the size of the smaller one, we define this as a
containment query; otherwise, it is a resemblance one. In
other words, if more than one non-overlapping copy of one
file can fit in the other, we assume the main interest to be
containment. Evidently, if a similarity tool behaves the same
way in both cases, we expect the performance metrics to
remain stable across the two scenarios.

Table 5
Basic containment/resemblance statistics by approximate matching tool.
TP TPratic  FP FPratic TN FN
ssdeep-con 74 0.078 5 0.333 7,382,136 354,840
ssdeep-res 877 0922 10 0.667 2,089,911 102,343
ssdeep 951 1.000 15 1.000 9,472,047 457,183

mrsh-con 2213 0602 15285 0.652 7,366,856 352,701
mrsh-res 1466 0.398 8168 0.348 2,081,753 101,754
mrsh 3679 1.000 23,453 1.000 9,448,609 454,455
sdhash-con 3472 0.634 497 0.629 7,381,644 351,442
sdhash-res 2002 0.366 293 0.371 2,089,628 101,218
sdhash 5474 1.000 790 1.000 9,471,272 452,660

To establish a baseline, we use our ground truth (gt)
results; Table 4 provides a summary. The first row (gt-con)
provides the statistics for all containment cases (pairs of
files); the second row covers all resemblance cases; the last
row combines the results. The first column (TP) provides
the number of true positives, followed by TP,.j, which
gives the fraction of true positives for the particular case
relative to the total number of true positives. The TN and
TNyaiio provide analogous numbers with respect to true
negatives; the last two columns provide totals. In simple
terms, we see that about 78% of the pairs fall into the
containment and 22% into the resemblance cases.

Tables 5and 6 present the statistics for the evaluated
similarity tools. From the former, we can see that ssdeep
has a notably different behavior from both the baseline and
the other two tools. Namely, 92% of its matches come from
the resemblance case; this is a logical result of its design,
which makes the resolution of the similarity digest a
function of file size. As file sizes draw apart, ssdeep simply
loses the ability to compare them. Both mrsh-v2 and
sdhash follow a containment/resemblance ratio that is
much closer to the baseline but is still tilted in favor of
resemblance as the fraction of resemblance TP results is
some 66-81% higher than in the ground truth case.

Considering the information retrieval metrics in Table 6,
one important observation is that all three tools yield better
results for resemblance over containment. For mrsh-v2
and sdhash the improvement is by 50-100%, while for
ssdeep it is up to 40 times. Among the tools, the relative
performance ratios remain comparable to the ones pre-
sented earlier in Table 3 with sdhash outperforming across
the board.

Conclusion

In this paper, we took on the challenge of automating the
process of characterizing approximate matching algorithm
behavior with respect to standard information retrieval
metrics, such as precision and recall, using real world data.
The main difficulty in this process is establishing the

Table 4
Ground truth statistics for containment/resemblance cases.
TP TPratio TN TNratio Total Totalyqaio
gt-con 354914 0.775 7,382,141 0.779 7,737,055 0.779
gt-res 103,220 0.225 2,089,921 0.221 2,193,141 0.221
gt 458,134 1.000 9,472,062 1.000 9,930,196 1.000
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Table 6
Performance measures by scenario and approximate matching tool.
Precision Recall Fi F Fos MCC
ssdeep-con 0.93671 0.00001 0.00002 0.00001 0.00005 0.01361
ssdeep-res 0.98873 0.00042 0.00084 0.00052 0.00209 0.08944
ssdeep 0.98447 0.00010 0.00020 0.00013 0.00050 0.04412
mrsh-con 0.12647 0.00030 0.00060 0.00038 0.00149 0.01834
mrsh-res 0.15217 0.00070 0.00140 0.00088 0.00345 0.03297
mrsh 0.13560 0.00039 0.00078 0.00049 0.00192 0.02232
sdhash-con 0.87478 0.00047 0.00094 0.00059 0.00235 0.08976
sdhash-res 0.87233 0.00096 0.00191 0.00120 0.00476 0.12612
sdhash 0.87388 0.00058 0.00115 0.00072 0.00288 0.09913

ground truth by some algorithmic means. We propose the
use of longest common substring (LCS) as useful measure of
commonality between two files. The problem with using
LCS, is that its computation is relatively expensive and
cannot be easily scaled to the degree necessary-the digital
forensics community needs a testing and evaluation
framework that can be routinely deployed by practitioners.
The main contributions of this work are as follows:

Efficient LCS approximation. Using classical ideas from
data fingerprinting with random polynomials, we derive a
linear approximate LCS (aLCS) algorithm that places a lower
bound on the size of the lowest common substring. The
observed performance shows that aLCS is, indeed, a prac-
tical approach estimating the size of LCS for real-world
files.

Analytical evaluation framework. We propose an
analytical evaluation framework, which quantifies the
performance of approximate matching algorithms with
respect to the ground truth, and provides a statistical
interpretation of tool results.

Analysis of existing approximate matching algorithms. We
utilized the framework to evaluate three approximate
matching algorithms which have public implementations—
ssdeep, sdhash and mrsh-v2. Our results show that a)
recall rates for all the tools are relatively low-in other
words, analysts should not take negative results as solid
proof for the lack of similarity; b) precision rates for ssdeep
and sdhash, are high, which means that a positive result is
a strong indication of commonality at the bytestream level;
c) on balance, sdhash shows the best overall performance.

We should note that further work is required to relate
common substrings to human-observable (and forensically
relevant) artifacts. For example, we have not controlled for
long strings of sparse data (e.g., all zeros) that, more likely
than not, are not of forensic interest. As a next step, we
would like to integrate this approach into the approximate
matching testing framework FRASH.
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