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There are two main reasons the processing speed of current generation digital forensic
tools is inadequate for the average case: a) users have failed to formulate explicit perfor-
mance requirements; and b) developers have failed to put performance, specifically la-
tency, as a top-level concern in line with reliability and correctness.
In this work, we formulate forensic triage as a real-time computation problem with spe-
cific technical requirements, and we use these requirements to evaluate the suitability of
different forensic methods for triage purposes. Further, we generalize our discussion to
show that the complete digital forensics process should be viewed as a (soft) real-time
computation with well-defined performance requirements.
We propose and validate a new approach to target acquisition that enables file-centric
processing without disrupting optimal data throughput from the raw device. We evaluate
core forensic processing functions with respect to processing rates and show their intrinsic
limitations in both desktop and server scenarios. Our results suggest that, with current
software, keeping up with a commodity SATA HDD at 120 MB/s requires 120–200 cores.

ª 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Compute resources have grown exponentially in line
with Moore’s Law since the 1960s, and are projected to
continue to do so for the foreseeable future. As Patterson
(2004) showed, storage capacity has enjoyed its own
exponential growth in parallel, with no end in sight. The
average amount of data per case, as experienced by FBI’s 15
Regional Computer Forensic Laboratories, has grown 6.65
times (from 84 GB to 559 GB) in eight years (2003–2011)
(RCFL).

To simplify, more computing enables the cheap pro-
cessing and storing of more data, which indirectly demands
proportionally more compute resources to be deployed for
forensic purposes.

Although the above outline of the problem is generally
known, the reality is that the ability of forensic tools to
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employ a bigger “computational hammer” has not grown
appreciably. We submit that the blame for this state
of affairs should be shouldered by both users and
developers.

Usersddigital forensic analystsdare focused on the
daily grind of following established routines and analyzing
their cases using the available tools on their workstation.
Let’s assume that ten years ago this was an adequate
approach, and an analyst could turnaround cases within a
reasonable amount of time. Every year, the amount of pre-
processing that needs to be done keeps growing faster than
the compute facilities of a lone workstation. To some de-
gree, the mismatch has been compensated for by better
methodology, more selective processing, and more expe-
rienced analysts. However, over time, bridging the gapwith
ad-hoc measures has become increasingly infeasible. By
now, most professionals agree that (lack of) tool perfor-
mance is a central part of the problem (Hibshi et al., 2011),
yet we have not seen clearly defined requirements that
developers can pursue.

Absent specific requirements, developers have largely
been content with their own “best effort” approach to
ital forensics and triage, Digital Investigation (2013), http://
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performance. With the exception of a few research projects
(discussed later) developers have continued to focus pri-
marily on providing new means to extract more data out of
forensic targets. Arguably, some of these insights can help
speed up processing but there is no overarching design that
brings all the pieces together, such that timely processing is
ensured.

At this point, it would be tempting to use the old “boiling
frog” metaphor, which claims that a frog placed in a pot of
water that is heated slowly will eventually be cooked
without even noticing. We prefer to consider the actual
behavior of a frog under these conditions as inspiration: “As
the temperature of the water is gradually increased, the frog
will eventually become more and more active in attempts to
escape the heated water. If the container size and opening
allow the frog to jump out, it will do so.” (Gibbons, 2002)

In other words, we believe that practitioners and de-
velopers are “feeling the heat” but the efforts so far have
not been very focused, or coherent, and mere agitation is
not sufficient for success. The goal of this work is to
contribute to the formulation of clear and realistic goals
and objectives, and to evaluate the current state of affairs
with respect to them, with a particular emphasis on triage.

1.1. Real-time computing

Real-time computations are distinguished by the fact
that they have formal deadlines by which they must be
completed; otherwise, the computation is considered
incorrect. Conceptually, any computation can be viewed as
having a deadline, even if not explicitly given, as users have
implied timeliness expectations. In practice, the term real-
time system (RTS) is used more narrowly to describe a
system that has a short deadline (typically on the order of
milliseconds) to react to external input. For example, an
airplane’s autopilot must monitor input from hundreds of
sensors and react accordingly. Systems in which failure of
one, or more, of the system’s processes to meet their
deadlines can have catastrophic consequences are referred
to as hard RTS, and are engineered such that computations
meet their deadlines under all circumstances.

On the other end of the spectrum are soft RTS, in which
the cost of missing some fraction of the deadlines is toler-
able. For example, NTSC standard quality video playback
runs at 30 frames per second, which means that every
33 ms the hardware will automatically render the current
content of the frame buffer. This implies that a video player
must produce a new frame every 33 ms, or else the old
frame would be rendered. In practice, missing the deadline
would have a negligible perceptual effect, as long as it does
not happen too often.

Video playback is an example of a particular type of
RTSdone inwhich a predictable amount of data needs to be
processed per time unit. Thus, the real-time requirement is
often specified implicitly as an average data processing rate
(e.g., 5 MB/s). Evidently, an application could miss some of
the internal frame deadlines yet meet the overall rate
requirement; however, such lapses are usually acceptable.

In our view, digital forensic processing ought to be
viewed the same waydas a soft real-time process with an
explicit processing rate requirement. To be clear, we are
Please cite this article in press as: Roussev V, et al., Real-time dig
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only concerned here with the computational tasksdsuch
as hashing, indexing, and filteringdperformed by the
forensic software. Clearly, overall investigation time is
influenced by a large number of other factors that are
beyond the control of the tool developer.

1.2. Forensic computing with deadlines

How do we formulate forensic processing as a real-time
task? A central part of the performance problem today is
that forensics is viewed primarily as an open-ended, post-
mortem analysis. This is reflected in the canonical proce-
dural model (Kent et al., 2006), which prescribes a linear
processing model of acquisition/collection, followed by
examination, followed by analysis, followed by reporting.
This model could be made even more detailed (Harrell,
2010):

preparation/identification/acquisition/analysis

/reporting/archiving

Regardless of its level of detail, this is fundamentally a
sequential model inwhich each stagewaits for the previous
one to complete before it commences. Thus, the onlymeans
to improve end-to-end latency is to speed up all stages of
the process. Unfortunately, exactly the opposite trend is in
place. As an illustration, consider the acquisition and
analysis stages, which are on the critical path for all sub-
sequent processing.

Acquisition rates are limited by the maximum sustained
throughput from the target drives. For high-capacity driv-
esdthe main pressure pointdacquisition time has
increased from 1 h in 2003 (200 GB at 58 MB/s) to almost
7 h (3TB SATA HDD at 123 MB/s (WD Green Desktop Hard
Drive), or 4TB SAS HDD at 171 MB/s (WD Black Desktop
Hard Drive)). It turns out this is optimisticdwe bench-
marked the acquisition rate of the ewfacquire tool (Metz) at
74 MB/s using an in-RAM 40 GB target, in-RAM output file,
on a 2.6 GHz AMD processor. This turns the mere acquisi-
tion of a 3TB SATA HDD into an 11þ hour affair. The clear
performance bottleneck here is the fact that the output is in
the compressed ewf (Expert Witness Format) format and
that the tool uses only a single CPU core. We also bench-
marked the ewfexport tool, which reads and decompressed
the acquired target at 150 MB/s (with in-RAM input and
output).

Some of the subsequent stages, discussed later, employ
even slower processing such indexing and carving. The
Sleuthkit Framework (TSK, sleuthkit.org), the de facto
reference open-source forensic architecture, defines
further processing as being organized in the form of pipe-
lines (Fig. 1).

Clearly, in this type of architecture there is no concern
for latency (the time between the initiation of a computa-
tion and its completion) and we can neither express, nor
hope to achieve, any specific processing deadlines. For that
reason, the only way to achieve the necessary performance
is to recast forensic processing as a real-time task and
completely overhaul the architectural model of forensic
processing.

Specifically, we submit that the ultimate performance
objectives should be expressed as follows:
ital forensics and triage, Digital Investigation (2013), http://
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Fig. 1. Phases of TSK filesystem analysis. http://www.sleuthkit.org/sleuthkit/framework.php.
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a. Target acquisition and forensic processing should be
performed in parallel at the maximum throughput rate
afforded by the target;

b. Acquisition and processing should start and complete at
(approximately) the same time;

c. Partial results should be made available as soon as they
are produced.

Alternatively, we could say that the processing rate
should equal the maximum target acquisition rate. Thus,
for a modern SATA drive, the reference processing rate is
about 120 MB/s. Note that this requirement includes all
types of processing that we anticipate for the target. The
last requirement on the list above effectively eliminates
processing as a bottleneck in the investigative process, and
allows analysts to begin productive work almost instantly.
This is consistent with the general notion of real-time
processing as perceived by users.

The given performance objective is provably optimaldit
is not possible to complete processing of all the data before
all the data is actually read, so finishing at the same time is
the best result we can hope for. Also, once the processing is
done, we (the developers) are out of the picture as a per-
formance bottleneck, and it is up to investigators to time-
optimize their analysis.

Later, we will discuss the question of how to achieve our
performance objective. Before that, let us use this
performance-centric point of view to take a fresh look at
howtodefineandsatisfy the requirements of forensic triage.
1 http://code.google.com/p/forensicscanner/.
2. What is triage?

Over the last several years, the concept of triage has
entered the digital forensic vocabulary and practice.
Although its specific interpretation varies, it generally re-
fers to a fast, initial screen of (potential) investigative tar-
gets in order to estimate their evidentiary value.
Please cite this article in press as: Roussev V, et al., Real-time dig
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Triage is generally perceived as a separate, almost
throwaway, effort that is not formally connected to the
main forensic investigation. We see this entirely as the
result of the performance inadequacies of standard forensic
methods, which forces practitioners to hack together
separate triage tools, such as Carvey’s Forensic Scanner.1

Many practitioners in law enforcement refer to this
initial investigative step as triage, only if it happens outside
the lab and before admitting the media as evidence
(Parsonage). In our view, such procedural distinctions
are largely inconsequential from a software engineering
perspective. Instead, building on the discussion in the
previous section, we define triage as an optimization
problem:

Digital forensic triage is a partial forensic examination con-
ducted under (significant) time and resource constraints.

In other words, given a certain amount of time (e.g.,
60 min), computational resources (CPU/RAMd8 cores,
16 GB RAM) and I/O resources (120 MB/s HDD throughput),
there is a finite amount of work that can be performed on
the target. The goal of triage is to get to the richest andmost
relevant information content within these constraints, and
present the investigator with the best available information
to make decisions. This formulation covers all practical
scenarios, regardless of whether the triage is performed in
the field, or in the lab. Any case-specific legal restrictions
can be modeled as placing yet more restrictions on the
optimization task.

Triage is almost indistinguishable from early forensic
investigative steps, and it closely follows what experienced
analysts dowith a target in the beginning. Givenmore time,
triage naturally transitions into deeper forensics. In that
ital forensics and triage, Digital Investigation (2013), http://
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sense, attempting to formulate and delineate triage as a
completely separate process is neither necessary, nor
useful.

From a technical perspective, it becomes clear that
latencydthe elapsed time between a query, and a
responsedis the primary performance requirement in
triage. Since low latency is also an important design
requirement for any forensic tool, there are no inherent
trade-offs in optimizing all tools for latency. In other words,
we can use the acute needs of triage as a reason to broadly
rethink and improve digital forensic tool design.

Given the low latency (LL) requirement, a triage tool has
several choices:

� Employ existing LL methods, such as examining fil-
esystem metadata.

� Develop new LL methods, such as block forensics
(Garfinkel et al., 2010) and similarity digests (Roussev
et al., 2010).

� Adapt high latency (HL) methods to a LL setup, e.g., by
sampling data and/or optimizing the implementation.

� Turn HL into LL by applying parallel processing. In a lab
environment, it is becoming quite feasible to utilize
tens/hundreds of CPUs; the vast majority of current
tools are not ready for that. In the field, parallelization
opportunities are likely to be less generous.

� Use higher level knowledge, whereby LL methods are
combined with the occasional use of higher latency
methods. In this setup, a tool could use an inexact LL tool
to obtain a hint as to the relative information value of
different objects (such as files) are worth examining
with high latency methods.

By exploring in detail these different approaches, we
can identify the most promising avenues for research and
development. Fundamentally, total latency is the sum of
(data) access latencydthe time is takes to retrieve the
input datadand processing latencydthe time it takes to
perform the computation. In the next section, we
examine these concerns for different classes of forensic
methods.

Although it would be nice, for the sake of completeness,
to cover all forensic tools of note in the study, closed source
tools present at least two critical methodological problems
that have no clear remedies:
Table 1
Price and performance comparison of HDD and SSD.

HDD
WD Green

SSD
Samsung 830

Capacity (GB) 3000 512
Cost (dollar/GB) 0.04 0.74
Throughput (MB/s) 123 500
IOPS 135 80,000
Acquisition time (min) 407 17
� We have no means by which to isolate and benchmark
individual processing functions; thus, it is unclear what
we would be measuring.

� By extension, we have no means to reliably measure
the effects of parallelism in performance; indeed, most
commercial tool have very limited concurrency
capabilities.

There is also the practical concern of how to choose the
tools that ought to be included in a representative sample.
For all of the above reasons, we chose to break down the
evaluation by function and use open, state-of-the-art
implementations. Although it is not inconceivable that
some commercial implementations of individual functions
Please cite this article in press as: Roussev V, et al., Real-time dig
dx.doi.org/10.1016/j.diin.2013.02.001
might hold a slight advantage, our overall experience does
not point to that being user observable. It is also notable
that many of the performance limitations stem directly
from hardware constraints and filesystem design, so there
is a hard limit on how fast some of the functions could be
performed.

3. Rate classification of forensic methods

The study in this section is an attempt to quantify
different methods with respect to their inherent latency
costs, as well as identify methods that can be sped up.
Since our main focus is triage, we are interested in what
can be accomplished by working directly with the target
media. Our discussion assumes that the analyst can
afford about an hour worth of processing, and we are
evaluating the applicability of various techniques in this
context.

3.1. Choosing the target

Modern drives have split into two distinct catego-
riesdlarger capacity hard disks (2–3TB), and smaller ca-
pacity solid state drives (128–512 GB)dthat are very
different with respect to price and performance. Table 1
summarizes these differences for two representative driv-
esdthe Western Digital Green 3TB and the Samsung 830
256 GB.

As the numbers clearly show, the real problem rests
with large HDDsdthey have larger capacities and
notably weaker bandwidth and latency (IOPS) charac-
teristics. For SSDs, we can comfortably read the entire
target during the 1 h reference period. Therefore, we
assume for most of our discussion that the target is an
HDD.

However, we do not lose sight of the fact that SSDs
have become affordable and are the new standard for
laptops and mobile devices. We will return to this point
later in our discussion and will show that the increased
performance of these storage devices exposes to an even
greater degree the performance deficiencies of forensic
tools.

3.2. Filesystem metadata extraction

3.2.1. File attributes
Volumemetadata (partitions) is a trivial amount of data,

which can be accessed instantaneously. Filesystem meta-
data, specifically file attributes, can be obtained rather
quickly, even for a large hard disk, as the following exper-
iment shows:
ital forensics and triage, Digital Investigation (2013), http://
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Target: 2TB SATA drive, 7200 rpm, etx4 filesystem, 1.8M
files.

Test: Obtain complete file listing from a freshly moun-
2 http://digitalcorpora.org/corp/nps/files/govdocs1/.
ted drive (by executing the Linux find command).
Result: Total execution time is 36 s. Using the Linux

blktrace utility we monitored the device at the
block level to understand the block-level access
pattern. The observed workload consisted of
w47,000 I/O read operations for a total of 188 MB
of data; average rate was 5.2 MB/s.

The latter number shows that the access pattern is
clearly “inconvenient” for the mechanical drive, which,
based on our benchmark tests, is capable of 104 MB/s of
sequential throughput.

In a separate experiment, we created 500,000 empty
files on each of two 10 GB partitions, formatted as etx4 and
ntfs, respectively. Mounting and reading the file attributes
took 1.2 s on etx4 and 4.8 s on ntfs. The difference can be
explained by examining the workloads: on etx4 it was
w5000 reads (20 MB), whereas ntfs generated w22,000
reads (88 MB). These numbers are supported by the fact
that, overall, ntfs uses more storage for the filesystem
metadata than ext4: 170MB with etx4 vs. 620 MB with ntfs.

Despite the differences across different filesystems, the
amount of data accessed is small enough that, even for
large targets with millions of files, it is practical to obtain
the file attributes for all files on the system during triage.

3.2.2. MS Windows registry
The Windows registry contains a significant amount of

system and user behavior metadata, and often retains trace
data well beyond its intended duration. As such, it is a
prime candidate for inclusion in any triage analysis. We use
Registry Decoder (Marziale and Case) as the reference tool in
our performance benchmarks; our reference target system
is a Windows 7 desktop, in use for a year. In acquiring/
analyzing the registry data, we have the choice of working
with the current state only, or also consider prior snapshots
maintained by the OS; we start with the former.

Acquiring the registry hives takes 2 min and results in
seven files (100 MB total) containing w280,000 keys. Pre-
processing (parsing) the hives takes another 6 min on a
2.9 GHz CPU; running all the available plugin components
(which produce targeted analytical reports) requires
another 2 min. Thus, the total time for processing of the
current state is about 10 min.

Including the prior state of the registry requires the
processing of an additional seven snapshots, which brings
the total to 63 files and 770MB. Since processing is linear, it
would take over an hour to parse all files, and run all plu-
gins. This number suggests that, with its current imple-
mentation, registry processing must be applied selectively.
The alternative point of view is that registry tools need to
be sped up, with parallelization as the obvious first step.

3.3. File metadata extraction

Most file types contain metadata informationdsuch as
authors, keywords, and toolsdas part of the file format and
those can be used to perform high-level filtering of the data
Please cite this article in press as: Roussev V, et al., Real-time dig
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without having to process the content of the file. For
example, EXIF data is frequently embedded in JPEGs;
author and keyword information is used routinely in office
documents. File metadata is a small fraction of the overall
size of the file, so we can expect that it is significantly
cheaper to extract and process. Further, most of it is located
in the file header, so we would expect expedient access.

To verify these conjectures, we ran the ExifTool (Harvey)
in a variety of scenarios. First, against a hard drive:

Target: 2TB SATA drive, 7200 rpm, etx4 filesystem.
Test: Obtain all metadata for 20,000 files from the

GovDocs corpus2 (Garfinkel et al., 2009) (10.6 GB)
from a just-mounted HDD, using exiftool 8.6.

Results: Total execution time: 5m33s
Total data read: 757 MB
Total block read operations: w47,000
Average (per file) data read: 38 KB/file
Effective processing rate (files): 60 files/s
Effective processing rate (data): 2.27 MB/s

This is a somewhat unexpected result in that CPU pro-
cessing is a limiting factor. Rerunning the experiment with
four CPU cores cuts the execution time in half to 2m38s,
bringing the processing rate up to 4.8 MB/sdcomparable to
the rate for file attribute extraction. Further increase in
parallelism does not yield benefits as the task becomes I/O-
constrained.

The above results suggest that file metadata extraction
needs to be applied more selectively in a triage scenario, as
we can only hope to process about 200,000 files/h.

3.4. File content extraction

File content extraction simply means reading the full
content of a file. On a mechanical drive, this creates some
challenges as the operating system (OS) alternates between
reading from disk blocks containing filesystem metadata
and blocks containing actual file content. This translates
into non-sequential access pattern at the block level, which
forces expensive seek operations. In the extreme, when the
pattern is completely scattered, the throughput of the drive
becomes limited by the IOPS rate, which is around 100 IOPS
for the average SATA drive. Therefore, the OS makes a sig-
nificant effort to ensure that most data is laid out sequen-
tially, and if the workload consists of long sequential reads,
throughput would approach the maximum sustained rate
for the hardware (104 MB/s for our reference HDD).

Given the above observations, we run our scenario
several times targeting different files for extraction.
Namely, we split the files into several groups based on
sized0–4 KiB, 4–16 KiB, 16–64 KiB, 64 KiB–1 MiB, and
1 MiB–128 MiBdand extract 10,000 files from each group.
(Before every run, we remount the drive to clear the cache,
and warm up the metadata cache by reading the file at-
tributes for all files.) Table 2 summarizes the results:

The numbers clearly bring home the point that, under
the constraints of triage, file extraction ought to be planned
ital forensics and triage, Digital Investigation (2013), http://
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Table 2
Execution time and throughput for 10,000 files in five categories (HDD).

Size total
(MB)

Avg file
(KB)

Time
(s)

Rate
(MB/s)

Rate
(files/s)

0–4K 41 4 79 0.52 127
4–16K 121 12 112 1.08 89
16–64K 398 40 123 3.24 81
64K–1M 3587 359 176 20.38 57
1–128M 26,772 2677 450 59.49 22

Fig. 2. Latency-optimized target acquisition architecture.
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carefully as data throughput for small files on HDDs is
abysmal. Nonetheless, it is still quite feasible to obtain 10–
20,000 small files within 2–3 min. (It is worth noting that
our reference HDD represents a best case scenario as it was
created in one shot, and the OS has had the opportunity to
organize the data sequentially with no subsequent delete/
create cycles.)

3.5. Latency-optimized target acquisition (LOTA)

The observations in the previous section should make
it clear that optimizing data extraction on large HDDs
needs a more systematic approach to maximize the
amount of data extracted from the target. We built a
prototype system that implements latency-optimized target
acquisition (LOTA), which reconciles the need to read data
sequentially from the target with the need to process it in
the form of files.

The rationale of the system is simpledbefore we start
cloning a target, we parse its filesystem metadata to build
an inverse map of data blocks to files. After that, we start
reading the disk blocks sequentially from beginning to end,
and use the map to reconstruct on the fly the files whose
contents have been acquired. Once a file is complete, it is
made available through the regular filesystem interface to
file processing tools. Disk cloning proceeds in parallel.

The filesystem parser reads and analyzes the filesystem
metadata of the target image/device and returns a list of file
entries; each contains the full-path of the file, its inode
(number), its parent inode, its mac times, the actual size of
the file on-disk, the list of clusters used by the file (in order
of usage) and finally its resident data (in case the file is
small enough to fit within a single entry).

The resulting map is read by the (master) server
component and distributed evenly to the pool of (agent)
client processes, which may be local, or remote. Once the
target processing begins, all blocks are routed by the server
to the responsible client for on-the-fly file reconstruction.
Completed files are written out to the local filesystem and
the available file handlers are notified; a handler can be any
piece of software installed on the system. Fig. 2 illustrates
the LOTA architecture.

A couple of features are worth pointing outdthere is no
hard limit on the number of clients and handlers so the
system can be scaled up to the necessary degree to keep up
with acquisition rates (alternatively, the system will auto-
matically throttle back to a sustainable throughput rate).
Since blocks are sent one at a time, there is no network
flooding effect and, since 1Gbit Ethernet approximately
matches the 120 MB/s HDD throughput, the system does
not require any special hardware.
Please cite this article in press as: Roussev V, et al., Real-time dig
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The benchmarked results match our expectationsdwe
can perform I/O-bound operations at line speed. Specif-
ically, we used a 300 MB/s RAID target to understand the
performance of the system. With a single client, file
extraction can be performed at 100–110 MB/s, with two
(and more) it reaches 160–180 MB/s and becomes I/O-
bound as the RAID is also used for writing out files. Un-
surprisingly, adding crypto-hashing as a file handler does
not affect the observed throughput rate.

Overall, LOTA can increase the average file extraction
rate (by volume) 3–4 times: from 25 to 30 MB/s to 100–
120 MB/s. Over an hour, this means an increase from
w100 GB of data to w400 GB. The benefits to smaller files
are substantially larger, which opens up a new avenue of
researchdoptimizing the read sequence to maximize the
number of files recovered by the deadline.

3.6. File content processing

3.6.1. Crypto-hashing
Cryptographic hashing, typically of the MD5 and/or

SHA1 variety, is routinely employed during processing.
These are fast computations with bulk rates (on a 2.9 GHz
Intel Xeon X5670 single CPU core) of 475MB/s and 340MB/
s for MD5 and SHA1, respectively. Block hashing in in-
crements of 4KiB is only marginally slower at 415 MB/s and
295 MB/s, respectively.

In a triage scenario, crypto-hashing is I/O-bound and
should be applied on all data read from a target. Lookup in a
properly-organized in-RAM databasedbased on a hash
table, or Bloom filtersdis practically free. For example, a
4 GiB Bloom filter could represent 4TiB of reference data at
4KiB blocks with a false positive rate of 1 in 10,000; lookup
requires no more than five memory accesses.

3.6.2. Similarity hashing
Similarity hashing using similarity digests (Roussev

et al., 2010) is a technique that allows the correlation of
objects (such as blocks, files, and network packets) that
share common data. The commonality is detected at the
bitstream level and does not require parsing or under-
standing of the data being compared. There are two basic
scenarios in which similarity hashing is useful: a) identi-
fying the presence of a small piece of data (block, file) in-
side a bigger container (file, volume); and b) identifying
versions of an object (file) that are comparable in size. The
ital forensics and triage, Digital Investigation (2013), http://



Table 3
Performance of a single Solr instance with 12 threads.

File type File
count

Avg file
size (KB)

Total size
(MB)

Time
(s)

Rate
(MB/s)

Rate
(files/s)

txt 25,378 800 19,826 1294 15.32 20
html 47,499 62 2898 197 14.71 241
rtf 229 174 39 3 13.00 76

pdf 46,957 613 28,091 971 28.93 48
doc 14,776 598 8624 277 31.13 53
xls 7607 914 6790 213 31.88 36

Total/avg 142,446 465 66,268 2955 22.43 48
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algorithm is robust with respect to the alignment and
distribution of the common data. In practice, this means
that we can find, for example, all files (pdf, doc, docx, zip,
etc) that include a particular (jpeg/png) image, such as a
corporate logo. Similarly, we can find versions of known
executable files and libraries.

Earlier work on fuzzy hashing by Kornblum (2006)
produced fixed size signatures, which are applicable in a
relatively narrow range of scenarios and are much less
reliable than similarity digests (Roussev, 2011), which
produce signatures proportional to the size of the target
(w1.5–2.5% of the original).

The reference similarity digest implementation consists
of a core librarydlibsdbfdwithmultiple language bindings,
a self-contained command line tooldsdhashdfor all major
platforms (Window/Linux/MacOS), a service implementa-
tiondsdhash-srvdwith a language-neutral protocol, and a
web-based client. All tools are designed for high
throughput by taking advantage of multi-core parallelism.

Detailed description of sdhash capabilities is beyond the
scope of this article; instead, we highlight some benchmark
results relevant to triage. Specifically, we focus on two
scenariosdstreaming identification of content, and differ-
ential analysis of multiple targets.

In the streaming scenario, wewant to read a target HDD
at its sustainable throughput rate of 100–120 MB/s and, for
each data block (4/16 KiB), query a reference database of
known files. The question we ask isdgiven the target rate,
what it the maximum size of the reference database that
can be queried online?

Using sdhash 3.0 (sdhash.org) and a 48-core server, the
answer is w15 GB. Specifically, we ran a 14 GB disk image
from the M57 set3 against a 10 GB reference set in 92 s, cor-
responding to a processing rate of 152 MB/s. This is equiva-
lent toprocessingat100MB/s against a referencesetof15GB.

In Roussev and Quates (2012), we showed that sdhash
can be used to perform large-scale automated differential
analysis, by correlating multiple hard disk images and RAM
snapshots. We applied it to a data set that is 1.5TB in size,
and consists of 78 disk images and 84 RAM snapshot, and
showed that we can sketch out the solution of the three
main scenariosdcontraband, eavesdropping, and espio-
nagedin approximately 2 h (on a 24-core box) beyond the
time to clone and hash (in parallel) the targets.

This is a somewhat different triage/early investigation
scenario from the one we considered so far but has the
same urgency and requires that results be produced in
minutes. Given more processing power, in a lab setting, it is
entirely possible to produce results sooner, during the
cloning/hashing process.

3.6.3. Indexing
(Search engine) indexing is the process of parsing,

analyzing, and storing of data to enable fast and accurate
information retrieval (IR). This is a commonly employed pre-
processing step during forensic investigation, and one not
known for speed and efficiency. This is a technique that is
borrowed from the IR field, and its primary performance
3 http://digitalcorpora.org/corpora/scenarios/m57-patents-scenario.
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requirement is the speed and efficiency of retrieval, not
indexing.

To quantify typical indexing performance, we used the
Apache Solr search platform4 and the SolrJ client5 to get
representative statistics. We used a 66 GB sample of doc-
uments from the NPS Govdocs corpus; the results are
presented in Table 3.

We established experimentally that the Solr instance’s
throughput tops out using 12 threads, although all pro-
cessing is done on in-RAM targets and 48 cores are avail-
able. The numbers represent end-to-end performance,
which includes parsing the target documents.

We can see two performance clusters around 15 MB/s
and 30 MB/s, with more complex files (pdf/doc/xls) offer-
ingdsomewhat counter-intuitivelydthe higher rate. The
15MB/s number should be consideredmost relevant in that
it shows how fast text gets processed. The higher process-
ing rate for pdf/doc files is, to some degree, misleading as
these often contain images, which are skipped over by the
indexing process. Finally, xls files contain relatively little
textual data, so their performance is atypical as well.

3.6.4. Decompression
Although not a forensic function, per se, decompression

often stands on the critical path of file processing as a large
number of formats are compressed. Unpacking of com-
pressed archives creates potential new (and larger) data
sources. The vast majority of lossless compression is based
on the zlib/deflate/gzip standards (RFC 1950–52) so un-
derstanding their performance is a good proxy for overall
decompression performance.

We use 1 GB in-memory input and output targets to
estimate the decompression rate using the Linux gzip, and
gunzip, which both yield an average decompression rate of
28–30 MB/s on a 2.6 GHz processor.

3.7. Block-level processing

Block-level techniques completely ignore the filesystem
metadata and treat the target merely as a sequence of
blocks. That has the advantage of requiring only a
sequential pass over the target media, thereby ensuring
maximum throughput. As well, they naturally include all
data present, including remnant data.
4 http://lucene.apache.org/solr.
5 http://wiki.apache.org/solr/Solrj.
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Bulk Extractor6 is a forensic tool which scans the raw
disk images, or any data dump, for useful patterns (emails,
URLs, IP addresses, etc). It uses precompiled scanners to
speed up processing, relative to grep-like tools, and
heuristics to reduce false positives and noise. It is designed
to take advantage of available multi-core capabilities
and aims to unearth useful clues early in the forensic
process.

For the benchmarking purposes, we used one of the
M57 disk images, and worked through the available pa-
rameters to optimize the processing rate.

Target: 10.24 GB NTFS volume, cached in RAM
Test: Bulk feature extraction with bulk_extractor v1.3;

tested with 8/48 CPU cores @2.6 GHz
Results: Execution time 8 cores: 661 s, 15.5 MB/s;

48 cores: 172 s, 60 MB/s.

It is clear that this is a somewhat expensive procedure
and a dedicatedworkstation can achieve only 10–15% of the
available I/O throughput rate. In an actual triage where CPU
capacity has to be shared, the tool will fall further behind.
On the server, it becomes feasible to operate at 50% of the
throughput, which is getting closer to what we need.

Data carving is another tool routinely employed in fo-
rensics to reconstruct logical objects, primarily files, from
the block view of the storage device. Our initial intent was
to include such processing in the survey; however, despite
efforts by DFRWS,7,8 and NIST9 to provide test cases, we
found it difficult to construct a plausible average case. The
problem is that there is too much variability and perfor-
mance depends not only on the data but also on the specific
tool used and the specific execution parameters.

In our view, it is precisely this unpredictability that is a
strong argument against routinely deploying carving dur-
ing triage. Due to high false positive rates, carving tends to
generate a lot more data, which is the last thing we need
during triage. It is time to rethink why we use carving and
whether we could achieve its most important benefits by
other means.

4. Putting it all together

The purpose of the discussion so far has been to attach
some performance numbers to some typical early investi-
gation/triage tasks. This section is an effort to understand
what is possible today, where the bottlenecks are, andwhat
are the most promising solutions. We consider a 1-h triage
on an 8-core workstation (field triage) and on a 48-core
server (lab triage) of a 2TB HDD.

4.1. File attribute extraction (2 min)

This should be the first task of any triage tool and can be
completed within the first 2 min even for drives with large
6 https://github.com/simsong/bulk_extractor.
7 http://dfrws.org/2006/challenge/.
8 http://dfrws.org/2007/challenge/.
9 http://www.cfreds.nist.gov/.
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number of files. The extracted metadata is the only viable
starting point for more intelligent triage.

4.2. (Current) registry extraction/parsing (10 min)

The extraction of the current registry takes only 2 min;
the actual processing takes another 8 min but can be done
in the background while other I/O proceeds. Since the
parsing of the data is readily parallelizable, we can hope to
slim the processing down to 2 min on 8 cores. Processing
prior versions of the registry can multiply that number by a
factor 6–7, bringing (parallel) registry processing closer to
15–20 min. This is starting to look expensive on a 60 min
budget so either delaying this step, or perhaps processing
the earliest and current versions could be a better default.

4.3. File content extraction (60 min, background)

The optimal solution to file content extraction is to
dedicate at least one core to systematically retrieving and
reconstructing files. Our LOTA prototype shows that we can
achieve close to optimal throughput. An even better solu-
tion would be to make sure that important files are
retrieved first.

4.4. Hashing

This is the only processing that can keep up with I/Oda
core should be dedicated to hashing and lookup. Similarity
digests could only be used in the field in a selectivemanner,
e.g., using a reference database of up to 1 GB. In the lab,
much more extensive use is possible, especially when
multiple targets are concerned.

4.5. Indexing

Indexing is essentially out of reach for the workstation
casedit is too computationally taxing, even if we dedicate
all the cores to it. In the lab, it would take approximately
the capacity of an entire server with 48/64 cores in RAM-
optimized configuration to keep up with line speed.

4.6. Decompression

Decompression is one of the silent performance stum-
bling blocks in forensic analysisda lot of common file for-
mats are compressed and the common compression
methods used can only yield 25–30MB/s of decompression
per core, under the best of circumstances. On an 8-core
budget, that is not easily affordable.

As we survey the results from the various tools, it be-
comes clear that we definitely need a systematic, highly
automated approach to triage. Simply putting together a
collection of tools, such as TAPEWORM10 and SIFT,11 and
handing them to an investigator to use in an ad-hoc
manner is woefully inefficient. Parallel processing is crit-
ical to any effort tomaximize the information extracted and
10 http://feedthetapeworm.com/.
11 http://computer-forensics.sans.org/community/downloads.
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processed from a target, and a human in the loop is not
equipped to deal with that. This is not suggesting that an-
alysts should be turned into spectatorsdon the contrary,
they must steer the overall direction of the process and
their experience can greatly speed things up. At the same
time, we have to take them out of the task of controlling
and optimizing the low-level processing details; this
should be done by a run-time engine that understands tool
performance and how to maximize it.

For2–3TBHDDs,wecanonlyhope toaccess about 10–15%
of thedatawithinanhour. Toevenachieve that,weneedtools
that aredisciplinedabout using almostexclusively sequential
access. Our prototype system for latency-optimized target
acquisition shows that it is, indeed, possible to achievemuch
better throughput and faster processing.

For current SSDsdwith access rates already passing
500 MB/s and 80k IOPSdthe good news is that it is entirely
feasible to access all of the data on a target within 20–
40 min for 256–512 GB drive. The bad news is that almost
none of our basic forensic methods, with the exception of
crypto-hashing, are in a position to keep up. In that sense,
the situation actually looks worse than the HDD case since
we no longer have the fig leaf of slow I/O.

4.7. Allocating the CPU cores: workstation

Based on the observed numbers, an optimized 1-hour
triage allocation could look as follows:

� File attribute extraction þ registry processing
� File attributes þ registry
processing

4

� File content extraction 2

� Crypto-hashing and lookup 2

� File metadata extraction 2

� Decompression 2

� Bulk processing 1

� Similarity hashing 1

� Indexing 1
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1 Core
� File content extraction
 1 Core
� Crypto-hashing and lookup
 1 Core
� File metadata extraction
 1 Core
� Decompression
 1 Core
� Bulk processing and/or similarity hashing
 3 Cores
In the above schedule, the top three processing tasks are
essential and can largely keep up with sustainable I/O
throughput (we are assuming LOTA). The distribution of
CPU resources across the next two coresdmetadata
extraction and decompressiondis somewhat unpredict-
able as it largely depends on the content of the target, so
two cores is the minimum allocation. The last three cores
are dedicated to selective processing with stream-oriented
tools that can work relatively fast on block-level data, yet,
they will still need to be employed selectively to keep up.

4.8. Allocating the CPU cores: lab server

Now let us consider what is possible in a 48-core lab
server to which we have attached our reference drive:
Cores

Cores

Cores

Cores

Cores

2 Cores

2 Cores

2 Cores

, Real-time dig
All the processes above the line we expect to keep up
with line speeddwe have increased the allocation to two
cores per task to ensure that. For registry processing, we
budgeted for highly parallel processing to extract impor-
tant metadata quickly. The processes below the line can
provide rates in the 15–30 MB/s range and will need to be
applied more selectively.

On balance, the lab server can do quite a bit more, but
even with 48 cores, the more sophisticated tools will not
be able to run at line speed. We are assuming a RAM-rich
configuration that will keep all processing in main
memorydotherwise, I/O will destroy the performance of
the system. Nevertheless, we have not verified experi-
mentally that all of this processing can take place on one
box at the predicted rates; it is not unreasonable to
expect some drop off due to competition for shared
resources.

5. Conclusions

In this work, we focused on understanding what type of
processing is feasible during forensic triage. To that end, we
bring several contributions to the field.

We argued that digital forensic processing ought to be
treated as a soft real-time problem with performance
(measured as processing rate) as a first-class
concern. From a technical perspective, this leads to a
demonstrably optimal solution and allows forensic turn-
around times to remain constant (and adhere to real-world
deadlines). Further, even if optimal solutions are not
currently available, posting specific numerical objectives
empowers users to measure progress and compare tools
objectively.

We formulated triage as an optimization problem, spe-
cifically, as a time- and resource-constrained subset of a full
forensic investigation. This is the first time that triage has
been formalized in this generic fashion and allows for the
solutions to be developed for both on-the-spot and lab-
based triage scenarios.

We surveyed the performance of the most commonly
used forensic methods as represented by their most com-
mon open-source implementations. We used a 2TB HDD as
the reference target and measured their processing rates
under 8-core “workstation” and 48-core “server” assump-
tions. From the results, it becomes clear that only a few
basic methodsdfile/metadata extraction, crypto-hashing,
registry extractiondcan fit the computational/time
budget in a workstation triage. More sophisticated
methodsdindexing, bulk processing, similarity
hashingdbecome somewhat feasible on the server.

We introduced the notion and an experimental imple-
mentation of a latency-optimized target acquisition (LOTA)
scheme, which enables file processing at maximum HDD
throughput rates during initial target acquisition. This is an
improvement of a factor of two for files of 1Mþ and a factor
of 100 for small files in the 4–64K range. The scheme is
conceptually simple and should be employed routinely by
forensic environments going forward.

Although the main focus here has been triage, by
adopting a unified conceptual framework with deep fo-
rensics, we can draw some more general conclusions:
ital forensics and triage, Digital Investigation (2013), http://
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� The “classical” forensic hardwaredthe workstation,
which we equate roughly to an 8-core boxdsimply does
not offer enough processing power to even keep upwith
a SATA HDD. Although this is known in the field from
experience, we have shown numerically that no amount
of tweaking will help it; it is time to move on.

� The way forward clearly requires the routine utilization
of substantially more computational power, RAM, and
efficient cluster computation. We estimate that to ach-
ieve our goal of completing forensic HDD target pre-
processing (as understood today) at the same time as
cloning requires the resources of 2–4 48-/64-core
servers. Note that this is to process to a rate of about
120MB/s andwould be the same for any size SATA drive.

� Processing of latest generation commodity SSDs pre-
sents both new opportunities and new challenges. High
IOPS performance allows the flexible investigation un-
constrained by drive latency considerations; the TRIM
(King and Vidas, 2011) command may eliminate the
need to look for deleted data; however, the high band-
width of these drives (500 MB/s) exposes the fact that
we have no readiness to process at these rates. This is an
open challenge and we hope that researchers and de-
velopers embrace it.

� We need to bring robust data reductions techniques to
bridge the gap between processing rates and data vol-
ume. Currently, this is donemanually by the investigator
in an ad-hoc manner. This is not sustainable as the
soundness of the results is heavily dependent on the
experience of the investigator. Instead, tools need to
adopt sound statistical methods, as suggested by Gar-
finkel (Garfinkel et al., 2010), which would allow them
to quantify the effects of data sampling on the final
results.

� For triage in the field, we should revisit some early ideas
for on-the-spot forensics (Gao et al., 2004), where in-
vestigators temporarily take over the local infrastruc-
ture (boot into a LiveCD forensic environment) and use
it to speed up the triage. This is particularly interesting
in a data center setup, where a service provider could
loan (a rack of) servers in exchange for speedier and less
disruptive search and seizure process.
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