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Over the past decade, a substantial effort has been put into developing methods to classify
file fragments. Throughout, it has been an article of faith that data fragments, such as disk
< blocks, can be attributed to different file types. This work is an attempt to critically
Zs‘m‘ff . examine the underlying assumptions and compare them to empirically collected data.
Digital forensm.s Specifically, we focus most of our effort on surveying several common compressed data
Sub-file forensics X . . . .
formats, and show that the simplistic conceptual framework of prior work is at odds with
the realities of actual data. We introduce a new tool, zsniff, which allows us to analyze
deflate-encoded data, and we use it to perform an empirical survey of deflate-coded text,
images, and executables. The results offer a conceptually new type of classification capa-
bilities that cannot be achieved by other means.
© 2013 Vassil Roussev and Candice Quates. Published by Elsevier Ltd. All rights reserved.

1. Introduction

File fragment classification—the process of mapping a
sample chunk of data, such as a disk block, to a specific type of
data encoding—has been the focus of substantial research
efforts for over a decade. Unfortunately, the practical re-
sults of all this work have been underwhelming, at best.
This purpose of this work is to:

a) clearly spell out the research problem;

b) identify explicit tool requirements based on usage
scenarios; and

c) present the empirical background work behind a new
classification tool called zsniff.

1.1. Motivation

Most digital forensic and incident response professional
can look (through a hex editor) at a piece of binary data,
such as a disk block or a network packet, and readily
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identify what kind of data it carries. This skill is developed
with experience, and can be very helpful in a variety of
forensic tasks, such as diagnosing break-ins, making sense
of residual data, decoding memory dumps, reverse-
engineering malware, data recovery, and so on.

The problem is that manual examination does not scale
and we need automated tools to perform this fragment
classification. Once we have a tool that can successfully
classify fragments, it can be used to: statistically sample
target during triage (Garfinkel et al.), improve file carving
(Richard and Roussev, 2005) accuracy, screen network
traffic, and provide context for other subsequent forensic
processing (e.g., indexing).

1.2. Requirements

Based on the scenarios in the previous section, we
identify the following main requirements for a fragment
classifier:

Accuracy. This is always the primary requirement with
any classification problem; however, we posit that digital
forensic applications require near-perfect classification
rates. The main problem are terabyte-scale targets, where
even 95% accuracy would produce an unacceptable number
of false positive/negative results.
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Line-speed performance. Methods should be fast enough
to keep up with bulk data transfers from secondary storage
and commodity networks: 100 MB/s and up.

Reliable error rate estimates. Every classifier should have
well-studied error rates based on large and representative
studies, preferably on a standardized, public data set.

Clear results. Classifiers need to recognize their own
limitations, and communicate their level of confidence in
the results. This will allow users and higher-level analytical
tools to better understand what encoding classification can
and cannot do.

2. Related work

Most work on file fragment identification to date has
attempted to solve the classification problem using a
combination of machine learning techniques and statistical
analysis. Researchers typically assemble a corpus of files of
different types. The corpus is divided into two groups, a
“training set” and a “test set.” The files in the training set
are processed with some sort of statistical technique and
the results are fed into a traditional machine learning al-
gorithm. The results are used to create a classifier. The test
set is then fed into the classifier and its ability to classify is
measured and finally reported.

2.1. Byte frequency distribution

McDaniel and Heydari (2003) considers the identifica-
tion of file fragments based on techniques other than
header/footer analysis. His basic approach was to create for
each file a histogram of the frequency of ASCII codes in the
file to be classified. This histogram is turned into a 256-
element vector; the vectors representing each file type
were then clustered. McDaniel’s corpus consisted of 120
files from 30 different file types; only whole files were
considered.

Plain byte frequency distribution (BFD) analysis yields
rather unconvincing results: 27.50% true positive rate for
the BFA algorithm and 46% for the BFC algorithm. McDaniel
proposed an alternative approach that created a file type
fingerprint based on a correlation of byte positions and the
ASCII value at that position. This approach achieved a
respectable 96% success rate—but careful analysis shows
that it was simply a variation on the traditional header/
footer analysis and would not work for classifying arbitrary
file fragments.

The next important piece of work belongs to Li et al.
who substantially revamped the BFD approach. The basic
idea is to use a centroid, or multiple centroids, derived from
the byte frequency distribution as the signature of a file
type. But Li’s published evaluation did not evaluate the
approach on fragments drawn from the middle of a file.
Instead, the fragments all started at the beginning of the file
with evaluation points at 20, 200, 500, 1000 bytes, as well
as the whole file. Interestingly enough, the 20-byte frag-
ments were identified with near perfection, yet the accu-
racy of the same approach applied to entire files drops
significantly—down to 77% for whole jpeg files. This is a
puzzling and unexplained result—using more data yields
less accurate results.

Karresand and Shahmehri developed a very similar
centroid idea to Li's and called it the Oscar method. This
was shortly extended (Karresand and Shahmehri, 2006)
with the introduction of a new metric called rate-of-change
(RoC), which was defined as the difference of the values of
consecutive bytes. The latter is not truly a generic feature,
rather it is suitable for detecting jpeg-encoded data only.
The reason this works is due to a quirk of the jpeg format,
which utilizes byte stuffing. The OXFF is used as an escape
character marking the beginning of all metadata tags; thus,
an extra 0x00 is placed after every OXFF byte in the body of
the file. This produces a reliable and highly characteristic
pattern—OxFFOO—which has a very high RoC. Apart from
jpeg, RoC does nothing to improve the rather modest clas-
sification success of other file formats considered. For
Windows executables, the false positive rate actually
exceeded the detection rate for most points shown,
(Karresand and Shahmehri) Fig. 3, although the peak
detection rate of 70% is equal to a false positive rate of 70%.
For zip files, things look a little better with false positive
rate of 70% when the detection rate reaches 100%;
(Karresand and Shahmehri) Fig. 4.

2.2. Statistical approaches

Erbacher and Mulholland argue that one could differ-
entiate among the formats by taking a purely statistical
perspective of the file container by using standard statis-
tical measurement—averages, distributions, and higher
momentum statistical measurements. Unfortunately, the
argument is rather thinly supported by plotting the
behavior of these measurements over several specific files.

Follow-up work by Moody and Erbacher (2008) at-
tempts to develop a general methodology based on the
observations. Unfortunately, the proposed statistics can
only distinguish broad classes of data encodings, such as
textual, executable code, and compressed, but becomes
easily confused in trying to pick out more subtle differ-
ences—e.g., csv vs. html vs. txt. Secondary analysis is made
to make a finer distinction with mixed results.

Veenman (2007) combined the BFD with Shannon en-
tropy and Kolmogorov complexity measures as the basis for
his classification approach. To his credit, he used a non-
trivial (450 MB) evaluation corpus, employed 11 different
file formats, and his formulation of the problem—identify
the container format for a 4096 byte fragment—was the
closest to our view of how the analysis should be performed.
The classification success for most was quite modest: be-
tween 18% for zip and 78% for executables. The only stand-
outs were html with 99% and jpg with 98% recognition rates.

Calhoun and Coles expanded upon Veenman’s work by
employing a set of additional measures (16 total) and
combinations of them. While the test sets were small—50
fragment per file type—he recognized the need for more
subtle testing and performed all-pairs comparison of three
compressed formats: jpeg, gif, and pdf. Another positive in
this work is that header data is not considered so the results
are not skewed by the presence of metadata.

The improved evaluation methodology (with the
notable exception of sample size) provides one of the first
realistic evaluations of generic metrics-based approaches.
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Provided true positive rates for the binary classification are
between 60% and 86% for the different metrics, implying
false positives in the 14-40% range.

More recent work has targeted incremental improve-
ments but has not produced any ground breaking ideas.
Due to space limitations, we will stop here—well short of a
comprehensive survey of the field.

3. Redefining the problem

Overall, prior work in the area of fragment classification
exhibits two critical problems:

a) it fails to provide a workable problem formulation that
is in line with real-world file formats; and

b) it fails to provide an appropriate evaluation framework
and reproducible results.

In many respects the latter is a consequence of the
former, so our first task is to properly state the problem we
are trying to solve. The basic conceptual problem is that
researchers have continually confused the notions of file
type and data encoding. The purpose of this section is to
differentiate between the two, and to derive a correct
problem formulation that enables scientific evaluation and
interpretation of the classification results.

3.1. Application file types

Let us start with the basic notion of a file. A file is a
sequence of bytes that is stored by a file system under a user-
specified name

Historically, operating systems have avoided interpret-
ing the names and contents of files; however, every oper-
ating system needs to be able to at least determine if a file is
executable. For that purpose, it uses a combination of file
naming conventions and a magic number—file type- spe-
cific binary string at the beginning of a file—to perform
sanity checking before attempting execution. For example,
CP/M and MS-DOS will load any file with extension .com
into memory and execute it, if the file’s name is typed; MS
Windows marks the beginning of executables with the
string MZ; Linux marks the beginning of executables with
the hexadecimal string 7f 45 4c 46, and so on.

For modern, more user friendly, operating systems it
became helpful to associate data files with the corre-
sponding applications so that actions like ‘open’, 'new’, and
‘print’ could be initiated by the user from the OS interface.
This loose association between file naming and applica-
tions is what the operating system presents to end-users as
a ‘file type’.

It is important to recognize that this is not a particularly
useful definition from a forensic perspective. Under the
hood, the internal data representation of a file type can
change radically between application versions. Moreover,
compound file formats can have dramatically different
content and, consequently, look very different at the bit
stream level. For example, an MS Powerpoint presentation
document could be primarily text, or it could include a lot
of photos, scanned images, audio/video files, spreadsheets,

etc. Since the individual components have different
encodings, the layout of the data in the file would be very
different in each of these cases.

The latter observation directly contradicts the central
belief of prevalent machine-learning-based methods that
an application-defined file type has characteristic statisti-
cal attributes that are useful for classification purposes.
Such an assumption works to a certain extent for simple
formats, like ASCII text, but is patently wrong in the
general case. Therefore, we must rebuild the definition of a
file type from the ground up, starting with the definition
of primitive data encodings.

3.2. Data encodings and file types

A data encoding is a set of rules for mapping pieces of data
to a sequences of bits. Such an encoding is primitive, if it is not
possible to reduce the rule set and still produce meaningful
data encodings.

The same piece of information can be represented in
different ways using different encodings. For example, a
plain text document could be represented in ASCII for
editing, and in compressed form for storage/transmission.
Once encoded, the resulting bit stream can serve as the
source for further (recursive) encodings; e.g., a base64-
encoded jpeg image.

A file type is a set of rules for utilizing (sets of) primitive
data encodings to serialize digital artifacts

Unlike data encodings, file types can have very loose,
ambiguous, and extensible set of rules, especially for com-
plex file types. Consider the breakdown of recursively
embedded MS Office objects found inside a set of ~20,000
MS Office (Table 3). A Word document may contain a
Powerpoint presentation, which in turn may contain Excel
spreadsheet, which may contain OLE objects, and so on. To
correctly discover the entire stack of embeddings, one needs
the entire file as a frame of reference. Contrast that to our
problem, where we have a (small) fragment to work with.

Even the simple (but common) case of including png/
Jjpeg-encoded images in a compound document illustrates
the inadequacy of the status quo. For example, assume that
method A advertises that it can correctly classify pdf frag-
ments of 1024 bytes in size 80% of the time and it mis-
classifies them as jpeg pieces 15% of the time. Is this a good
method to adopt, or not? The answer is unknowable:

On the one hand, maybe the method only gets confused
when the fragment is entirely jpeg-encoded so the 15%
confusion is just bad reporting on part of the author and
should be added to the 80% true positives.

On the other hand, if the sample evaluation set were
heavily text-based with many deflate-encoded parts, this
would be a rather poor method as it is relatively easy to
separate jpeg- and deflate-coded streams.

Also, how will the method perform if we encounter a
group of fax-encoded scanned documents?

Due to the poor problem formulation, we have no real
basis to understand the performance of the method. Yet, one
can find multiple examples (e.g., Calhoun and Coles) where
researchers treat compound file types as primitive data
encodings and produce effectively meaningless classifica-
tion rates and confusion matrices.



S72 V. Roussev, C. Quates / Digital Investigation 10 (2013) S69-S77

3.3. Problem statement

We submit that file fragment classification problems
consists of three autonomous sub-problems. Given a sam-
ple fragment, a classifier should be able to answer the
following questions:

1. What is the primitive data encoding of the fragment?
2. Does the encoding contain recursive encodings?
3. Is the fragment part of a compound file structure?

(The second question is strictly optional but is often
interesting for simple encodings. For example, identifying a
fragment as being base64-encoded is trivial but not very
informative; discovering that it encodes an image, or text is
substantially more useful.)

Note that we can always make a meaningful effort to
answer the first two questions. Our ability to answer the third
one depends, to a much larger degree, on luck as the fragment
must contain enough characteristic data from the container.

By splitting the problem into three separate questions,
we can begin to build a meaningful and informative eval-
uation framework. The split also means that establishing
the ground truth becomes much more complicated than
simply collecting a set of files with a given extension—we
need to parse the contents of our reference files to know
exactly what is in each evaluation sample.

Evidently, the size of a fragment is a crucial evaluation
parameter and performance can vary greatly. At the ex-
tremes, if the fragment is too small, there will not be enough
data to work with; as the fragment gets big the results may
get noisier as multiple encodings may be detected.

Another aspect of the evaluation process is defining the
required level of specificity. For the same piece of data, we
can often provide multiple classification in increasing order
of specificity—e.g., text - xml — mathml—and classifiers
should aim for the most specific result.

Finally, we submit that the true test of a classification
method is to be performed on independent fragment
samples that contain no header information. This is not to
suggest that identifying headers is useless but that a header
sample is the outlier case that is readily solvable with some
basic parsing code.

4. Design of zsniff

The overall goal of our work is to build zsniff—an
extensible classification framework, populate it with a set
of high-quality classifiers for the most common data
encodings, and leave it open to further extensions.

Some of the classifiers are inherently more compute
intensive. Therefore, our plan is to build a tree of classi-
fiers—from the most generic to more specific ones that
(hopefully) filter out most poor candidates based on easy to
compute attributes.

For the rest of the section we briefly discuss the various
classes of known useful classifiers, and focus most of our
attention on the deflate classifier, which we have devel-
oped. We omit all discussion on text classification, as this is
a mature subject by now.

4.1. Simple classifiers

The purpose of simple classifiers is to provide a quick
and general classification; based on the results, more spe-
cific (and computationally expensive) classifiers are chosen
for follow-up work. Below are a couple of examples of
these:

4.1.1. Entropy

Shannon'’s classical formula allows us to quickly place
the observed (probability distribution of) data into three
useful categories: low, medium, and high entropy. All com-
pressed, encrypted, and random data would exhibit high
entropy; text and code—medium; and sparse data, such as
large tables, logs, etc., are usually of low entropy.

4.1.2. Basel6/32/64/85

These are simple classifiers that detect the most com-
mon binary-to-text encodings. The detection is straight
forward as each encoding uses a well-defined range of
ASCIl codes. Once identified, the blocks using these
encodings can be converted to binary and sent back to the
beginning of the pipeline for second-order classification.

4.2. N-gram classifiers

N-gram classifiers rely on characteristic strings that can
provide both definitive classification and more subtle clues,
such as the use of specific markup. These classifiers are
particularly useful in identifying format keywords for top-
level containers, and are often the only reliable clue in
that regard.

4.3. Format parsers & verifiers

Format parsers look for synchronization markers in the
input and attempt to parse the remaining data according to
the format rules for the particular encoding. Since this is
meant to be a fast process, the parser will not attempt full
decoding of the data. Additional sanity checks can be
applied to data to reduce errors as illustrated by the
following example classifiers:

4.3.1. Mp3

Mp3 encoding is classification-friendly and is repre-
sentative of a broader class of audio/video containers. An
mp3 file consists of a sequence of independent, self-
contained mp3 frames. The beginning of a frame is
marked by 12 consecutive bits set to 1—a synchronization
marker— that are certain not to appear anywhere else in
the encoded stream. Following the synchronization bits is
information about the version, bit rate, sample rate, and
padding. Based on these parameters we can calculate the
length of the frame and predict the appearance of the next
header (Roussev and Garfinkel).

There are several criteria that allows the confirmation/
rejection of the fragment as mp3-encoded. First, the pre-
dictable appearance of the frame header—for a fixed-rate
encoding this will be almost periodic. Next, not all combi-
nations of parameters in the frame header are legal, and
even fewer are actually seen in the wild. Consecutive
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frames may be encoded at different bit rate but little else
changes from frame to frame.

Jpeg header recognition is relatively easy to accom-
plish—the header has a variable length record structure in
which synchronization markers are followed by the length
of the field. Thus, some simple ‘header hopping’ can reli-
ably identify the header, much like in the mp3 case.

Jpeg body recognition is also not difficult to accomplish
as the encoding uses byte stuffing that results in the 16-bit
hexadecimal FFOO occurring every 191 bytes, on average
(Roussev and Garfinkel). Placed next to a high-entropy
sample with a different encoding, like deflate, this
feature sticks out rather prominently and can be incor-
porated into the classifier in a number of ways. This can be
done quickly and efficiently, and we consider this a solved
problem.

4.4. Deflate classifier

Our starting assumption is that the methods described
are applied to high-entropy data, and the real problem is
separating the various types of compressed data, and to
distinguish them from encrypted/random data.

The deflate classifier is the main contribution of this
work and seeks to: a) identify deflate-coded data; and b)
distinguish among different types of underlying data.

The zlib/deflate encoding (RFC, 1950/1951) is entirely
focused on storage efficiency and contains the absolute
minimal amount of metadata necessary for decoding. It
consists of a sequence of compressed blocks, each one
comprised of:

3-bit header. The first bit indicates whether this is the
last block in the sequence; the following two bits define
how the data is coded: raw (uncompressed), static Huff-
man, or dynamic Huffman. In practice, dynamic Huffman is
present 99.5% of the time (Roussev and Garfinkel)).

Huffman tables. These describe the Huffman code books
used in the particular block.

Compressed data. The table is followed by a stream of
variable-length Huffman codes that represent the content
of the block. One of the codes is reserved for marking the
end of the block.

As soon as the end-of-block code is read from the
stream, the next bit is the beginning of the following block
header—there is no break in the bit stream between blocks,
and there are no synchronization markers of any kind. The
end-of-block code depends on the coding table, so it varies
from block to block. The upshot is that, absent sanity
checking, a deflate decoder can sometimes “decode” even
random data.

Using prior open source deflate implementations as a
base, we built a robust, stubborn, and heavily instrumented
C-++ version of the deflate decoder. Robust means that we
can throw any data at the decoder and it will either suc-
cessfully decode it, or fail gracefully.

Stubborn means that the decoder will successively
attempt to decode the given data starting at every bit offset.
While this is a brute-force approach, we see no alternatives.
One shortcut is that virtually all deflate blocks in the wild
use dynamic Huffman, which means that we have a two-bit
header pattern we can key off, saving us 75% of the work.

Once we have found a candidate block header, we
attempt to decode the Huffman tables that should be pre-
sent in a correct block. Using a combination of parsing
failures and sanity checks on decoded tables, we eliminate
most candidates within a few hundred bytes, so the
attempt is relatively cheap.

If the tables are deemed correct, we proceed to decode
the block until we reach the end-of-block marker and
restart the decoding process. One nice side effect of this
behavior is that deflate data does not need to be separated
from other (differently coded) data a priori.

We instrumented the decoder to output the decoded
tables, as well as block boundaries, and this data serves as the
basis for our empirical analysis of deflate data that follows.

We analyze the content of three different types of
deflate-encoded types of data. The goal is to establish
ground truth with respect to what is feasible to achieve
based on block size, and to search for characteristic patterns
in the Huffman tables that would allow robust classification.

5. Analysis of MS Office 2007 files

We start with an empirical analysis of MS Office 2007
files—docx, xIsx, and pptx—which we refer to as msx files.

5.1. Data sample

Since we are not aware of any public data set that pro-
vides an appropriate sample, we created our own, called
MSX-13 (Table 1).

We built it using the results of a popular search engine
to identify approximately 10,000 candidate documents of
each type. Due to search engine restrictions, it is difficult to
obtain more than 1000 results per query. Therefore, we ran
10 instances of the same query with different site re-
strictions. We used queries of the form ext:<file_type>
site:<tld>, where

<file_type> = docx|xlsx|pptx, and
<tld> = com|net|org|edu|gov|us|uk|calau|nz.

In other words, we asked for a collection of files based
on file type, with no particular keyword. The split along
TLDs ensures that the results do not overlap and the chosen
TLDs heavily favor English documents. Once downloaded,
the sample files were validated to ensure correctness. A
detailed description of the data set is available at http://
roussev.net/msx-13.

5.2. Content

Broadly, msx files are zip files that consist of deflate-
encoded files/components (almost entirely in xml), and

Table 1
MSX-13 data set statistics.
docx xlsx pptx
File count 7018 7452 7530
Total size (MB) 2014 1976 20,037
Avg size (KB) 287 265 2661
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embedded media content that is stored in its original
(compressed) encoding. Table 2 provides a breakdown of
the major components based on four statistics: count—the
total number of components of the given type; avg size-
—average size per component; total size—the total volume
of all components of the given type; and percent of total,
which provides the fraction (by volume) of all components
relative to the size of the respective data set.

The first category of components—referred to as defla-
te—represent all deflate-coded objects. The remaining
categories represent stored objects in their native enco-
ding—jpeg, png, gif, and tiff represent image data, the other
category encompasses embedded msx documents, fonts,
audio/video, and a tiny number of unclassified.

Observations

Although the three file formats share a common design
(and some components), the actual content differs
substantially.

Xlsx data is dominated (84%) by deflate content and has
the highest average size of deflate objects, whereas the
other two are dominated by embedded images with 66%
(docx) and 83% (pptx) of content.

Generally, small objects (deflate) are good news as the
beginning/end have readily identifiable markers and can
save us deeper analysis. Jpeg content is also good news as it
can be identified quite reliably.

Png content, quite extensive in docx/pptx data, is not
good news—it consists of deflate-coded image data.
Consequently, we need deeper analysis to distinguish it
from deflate-coded xml data.

As already mentioned earlier, msx objects can be
embedded recursively, which creates additional challenges.
Table 3 shows a breakdown of all embedded objects found
in our test data; each row represents the number of
embedded objects of the given type on each of the host file

Table 2
Content breakdown of MSX-13 files.

docx xlsx pptx
deflate
Count 128,088 199,899 1,002,162
Avg size (KB) 5 8 3
Total size (MB) 651 1652 2693
Percent of total 32 84 13
Jjpeg
Count 5644 2838 59,067
Avg size (KB) 142 68 121
Total size (MB) 802 193 7147
Percent of total 40 10 36
png
Count 6777 1728 65,692
Avg size (KB) 68 46 134
Total size (MB) 462 80 8820
Percent of total 23 4 44
giffdff
Count 574 193 4261
Avg size (KB) 102 32 160
Total size (MB) 59 6 680
Percent of total 29 0.3 3
Other
Count 431 90 3606
Avg size (KB) 30 54 107
Total size (MB) 13 5 384
Percent of total 0.6 0.2 1.9

Table 3
MSX-13: Recursively embedded objects statistics.
docx xlsx pptx Total

bin 844 105 6842 7791
doc 106 30 221 357
docx 18 30 163 211
ppt 26 26
pptx 2 4 6
xls 71 4 693 768
xlsx 275 1 2951 3227
Other 7 53 60
Total 1323 170 10,953 12,446

types. The bin group consists almost entirely (98.5%) of OLE
objects, which are stored deflate-compressed.

The most important takeaway is that one size is unlikely
to fit all and, most likely, we need a whole bag of tricks to
correctly classify the msx formats.

5.3. Format keywords

One simple and effective means to reliably classify
fragments is to find keywords (n-grams) that are highly
characteristic of the encoding. In this case, the overall data
format is a generic (zip) archive; however, the file/directory
structure of its content is highly characteristic. We used our
data set to empirically derive the most useful keyword
roots from the names of the constituent files. The result are
as follows: docx—23 keywords (of the form word/*);
xlsx—22 keywords (x1/*); pptx—21 keywords (ppt/*);
msx—five keywords common to all three formats. With one
exception, all keywords are between 8 and 13 characters.

For the next study (Table 4), we identified the keyword
locations on our test set, and calculated the fraction of
blocks that contain a keyword for several block sizes.

The results show that, for small block sizes, it is inher-
ently difficult to unambiguously classify msx blocks. (Recall
that only blocks containing the keywords can be unam-
biguously attributed to msx documents—the rest is com-
pressed xml and media data.) At 64KiB, almost 1/4 of the
average file size for docx/xlIsx, the classification rate ap-
proaches 50% and starts to become a practical, low-cost
approach.

It is useful to understand what is the main contributor
to the relatively low efficiency of keyword searches for
small block sizes. Since this is effectively a function of
component file sizes, one possible explanation is that
(presumably bigger) embedded media files are the main
reason. To test, we split each of the file sets into two sub-
sets—those that contain media, and those that do not—and
compared the detection rates. We found that the

Table 4

Fraction of blocks identifiable by keyword.
block size docx xlsx pptx
1024 0.061 0.078 0.044
4096 0.115 0.143 0.077
16,384 0.228 0.259 0.152
65,536 0.476 0.474 0.343
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hypothesized effect is real but small, and does not account
for our observations.

Instead, we studied the effects of large components by
comparing the ratio of the size of the largest component file
to the size of the entire document. Fig. 1 shows the
empirical distribution for the entire docx set; note that both
axes are logarithmic.

With respect to absolute size of the maximum sized
component we see an approximately linear relationship
with overall file size. This confirms our hypothesis that
larger files are more difficult to classify.

In summary, components for msx files routinely exceed
the size of most fragment sizes of interest, which places
inherent restrictions on our ability to perform keyword-
based classification and, by extension, unambiguous file
type identification.

5.4. Compressed block distribution

The next step is to dig deeper and start looking at our
chances of identifying data encodings. We consider the
distribution of deflate compressed blocks sizes. This data
can help us relate fragment size and classifier performance.

Fig. 2 plots the cumulative distribution of compressed
block sizes for four different deflated-coded data samples.
The docx and xisx statistics are based on the 3191 docx and
1291 xIsx files from MSX-13 that do not contain embedded
media (the png and exe/dll data are discussed in later
sections).

For docx, a 1/4/16KiB fragment has a respective 65.6/
90.2/99.6% chance of containing a whole block. For xIsx, the
numbers are 35.9/47.4/94.9%. The practical significance of
these percentages that they place an effective upper limit
on the performance of deflate classifiers for docx/xIsx
classifiers.

Alternatively, we can say that we need a minimum of
18KiB fragment to afford near-perfect chance of detecting
any present msx deflate block.

6. Analysis of png files

The png image format is a primitive data encoding that
utilizes deflate as its last step of the compression process. In
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Fig. 2. C.d.f. of compressed block sizes.

other words, it contains no overt (statistical) features that
can be used to distinguish it from compressed xml data, for
example. The rest of this section is an empirical search for
classification criteria to separate the two.

First, we find the distribution of compressed block sizes
(Fig. 2). Clearly, the distribution is more spread out, with
only 81.5% of compressed blocks below the 18KiB threshold
established in the prior section. However, block sizes do top
out around 48KiB, so a fragment of that size should be
classifiable, if appropriate criteria are found.

In search of such criteria, we plot (Fig. 3) the cumulative
distribution of the number of valid (Huffman) code table
values for the 256 ASCII characters vs. the corresponding
distribution for the msx files discussed in the previous
section (exe/dll is discussed later).

We can see very clear differences that have classification
value—any code table of size 60, and less, almost certainly
indicates a png block, whereas any code table of size 140,
and higher, indicates that it is not png. Together, these two
ranges cover about 30% of all observed code tables. By
looking at the p.d.f. (omitted here) we can cover another
30% of the range where the difference in probabilities is
substantial and will yield a reliable distinction criterion.
Yet, for the rest, code table size is not enough.
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Fig. 3. C.d.f. of code table sizes.
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It is time to consider code table content. To bootstrap the
decoding process, the Huffman table must define a bit
string code for every byte value (0-255) that will be needed.
For msx blocks, this means defining a code for every ASCII
character in use. Since this is a limited range, we can hope
that it would be different than the one for png, which is
encoding pixels.

Fig. 4 shows, for each ASCII code, what is the empirical
probability that it will be defined (docx/xIsx shown with
bars to accommodate large jumps between neighbors). For
example, for png, code 0 appears with probability 0.9778,
whereas for docx/xIsx, that number is 0.0005. At the same
time, for code 115 (’s’), we have 0.9991 for docx, 0.6900 for
xIsx, and 0.2559 for png.

The chart illustrates the opportunity for near-perfect
distinction between png deflate-encoded data and
deflate-encoded text/markup. Follow up work needs to
establish the shortest and most reliable combinations of
codes to place in the classifier.

7. Analysis of deflate-coded PE files

Let us briefly examine what happens to deflate-encoded
Windows portable executables (PE). This is relevant as
installation packages are often deflate-encoded. Following
the analysis template from the previous section, we placed
1000 exe/dll files from C:\Windows\system32 into a zip
archive and looked at the resulting Huffman code table
statistics.

First, the distribution of code table sizes (Fig. 3). It is very
clear that compressed PE files exhibit the cdf of a narrow,
bell-shaped distribution with 98.7% of the mass concen-
trated in the 110-140 range.

Next, we consider the distribution of valid codes in the
table (Fig. 4), which also exhibit a very regular and recog-
nizable signature. Specifically, the codes in the 0-114 range
show a uniform distribution, which is quite sufficient to
formulate strong classification criteria.

8. Discussion

To summarize, our empirical analysis of real-world data
(using the zsniff tool) has demonstrated the feasibility of
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reliably distinguishing among various types of compressed
data encodings. Specifically, we can distinguish among
deflate-coded text/markup, deflate-coded image data
(png), and deflate-code PE. Combined with prior capabil-
ities to detect jpeg and mp3 encodings, we have the solid
beginnings of an advanced fragment classification frame-
work that can cover almost all the data encodings observed
in our test corpus.

We should note that simply decoding any compressed
block and analyzing it in source is not a practical approach.
The reason is that the compressed blocks are often not self-
contained and reference data from previous blocks. Brown
(2011) discusses this problem in the context of data
recovery.

Due to space limitations, a number of lesser statistical
studies have been omitted. For example, one potentially
useful classification feature is the length of the code words
for each code. Shorter codes indicate higher frequency and
vice versa. Thus, we can treat code word lengths as a crude
histogram sketch of the symbol distribution in the source.

Performance is an obvious concern with any brute-force
method, such as our decoding attempts. The key to making
it work in a reasonable amount of time is to fail as quickly as
possible on bad input. On actual deflate data, the current
quick-and-dirty implementation of zsniff can run at about
5-6 MB/s on a single core.

On random data, our control and worst-case perfor-
mance scenario, it works considerably slower. As one
would expect, the tool occasionally decodes plausible
Huffman code tables (false positives). The good news is that
we never encountered two apparent compressed blocks
that are back-to-back (as they appear in true deflate data).
This observation is something to be explored further as it
can help reduce false positives.

9. Conclusions

This work makes several contributions to the field

Improved methodology. We analyzed the shortcomings
of prior work and showed that it has a fundamental flaws in
its assumptions. We corrected these foundational problems
by reformulating fragment classification as a set of three
autonomous problems that are to be pursued and evalu-
ated independently.

New reference data set. We built and validated a set of
some 20,000 MS Office 2007 files that can be used for
research purposes by the community.

New tool for parsing deflate-encoded data. We built a
robust tool that can automatically discover deflate-coded
data, generate a number of useful statistics, and (option-
ally) can decode the data.

Empirical analysis of deflate-coded data. We developed a
new methodology for characterizing the encoded data by
using information from the Huffman compression tables.
This analysis shows that coding tables for text/markup,
image data, and Windows executables have distinct sig-
natures and can be readily distinguished. Further, we
quantified the relationship between fragment size and
expected optimal classification performance on deflate-
coded data.
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The end result of this effort is that we have qualitatively
new capabilities that can disambiguate various deflate-
compressed data formats; and, ultimately, deflate data
from encrypted data.

The current implementation of the zsniff tool can be
found at http://roussev.net/zsniff.
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