
An evaluation of forensic similarity hashes

Vassil Roussev

Department of Computer Science, University of New Orleans, New Orleans, LA 70148, USA

Keywords:

Digital forensics

Similarity hash

Similarity digest

Sdhash

Ssdeep

a b s t r a c t

The fast growth of the average size of digital forensic targets demands new automated

means to quickly, accurately and reliably correlate digital artifacts. Such tools need to offer

more flexibility than the routine known-file filtering based on crypto hashes. Currently,

there are two tools for which NIST has produced reference hash setsessdeep and sdhash.

The former provides a fixed-sized fuzzy hash based on random polynomials, whereas the

latter produces a variable-length similarity digest based on statistically-identified features

packed into Bloom filters.

This study provides a baseline evaluation of the capabilities of these tools both in

a controlled environment and on real-world data. The results show that the similarity

digest approach significantly outperforms in terms of recall and precision in all tested

scenarios and demonstrates robust and scalable behavior.

ª 2011 V. Roussev. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The standard forensic practice of using file-, block-, volume-

level cryptographic (md5/sha1) hashes to perform known-file

filtering is increasingly running against the realities in the field,

which require a more robust and flexible approach. In

particular, crypto hashes fail in several important scenarios,

which steadily erode their overall effectiveness as filters:

1) Identification of embedded/trace evidence. Given a piece of

data, such as a JPEG, an investigator needs to able to search

for (traces of) its existence inside another document,

archive, disk image, or network trace.

2) Identification of code versions. Modern software is

dynamically patched and upgraded on a daily basis; it is an

infeasible to maintain crypto-hash inventory of all the files

for every single version.

3) Identification of related documents. Many documents

undergo changes/transformations as they are updated. It is

often necessary to be able to identify and trace the versions

across multiple evidence sources.

4) Correlation of memory and disk sources. An investigator

needs to be able to correlate memory captures and disk

images. The run-time layout and content of an executable/

document are different from the on-disk representation so

conventional hashes fail; however, identifiable common-

ality is clearly present.

5) Correlation of network and disk sources. Transmitted files

are fragmented and interleaved. Currently, correlation

requires time-consuming packet flow reconstruction and

protocol parsing to extract transmitted files before any

hash filtering can be applied.

The challenge for the next generation of forensic hashing

tools is to address the above scenarios without incurring

a prohibitive performance penalty. In other words, such tools

must be capable of reliably determining similarity and corre-

lation on various scales ranging from network packets and

disk blocks to TB-class disk images.

Since 2006, a couple of toolsessdeep (Kornblum, 2006) and

sdhash (Roussev, 2010)ethat attempt to address (at least some

of) the above requirements have emerged and have reached

E-mail address: vassil@cs.uno.edu.

ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 3 4eS 4 1

1742-2876/$ e see front matter ª 2011 V. Roussev. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2011.05.005

a development stage that is mature enough for NIST to start

generating reference hash sets for its RDS corpus (http://www.

nsrl.nist.gov). Up to this point, there has been no systematic

effort to quantify the behavior and performance of these tools

and to understand their strengths and weaknesses. The

purpose of this work is to quantify the performance of these

tools and provide insight into their capabilities.

In general, similarity hashes work at the byte-stream

representation and do not attempt to parse or interpret the

data in any way. As such, there are only capable of detecting

commonality among of the binary representations of digital

artifacts. This raises two major questions that need to be

studied:

� What kind of byte-stream correlations do these tools actu-

ally detect?

� How do detected correlations relate to human-perceived

correlations between the same artificacts?

The former question allows us to understand what are the

basic capabilities of the tools, whereas the latter examines

how these capabilities relate to real-world situations. Note

that both studies are needed in order to paint a complete

picture: byte-level correlations do not necessarily map to

syntactic/semantic correlations of interest and vice versa.

Such understanding is critical for practitioners in the field; as

well, it allows researchers to continually improve the tools

and align them with real needs.

To answer these questions, we present two evaluation

studies. The first one is a controlled one in which all data is

generated from pseudo-random streams and the ground truth

is known precisely. The second study is based on real data set

of 4457 files in which we manually evaluate the correlation

results produced by the tools.

2. Background: ssdeep and sdhash

The overall goal of a similarity tool is to be a drop-in

replacement for the crypto hashes being used in forensic file

practice for file filtering. Hash-based filtering involves hashing

two data objects and comparing the results. Crypto hashes (by

design) can only give simple yes/no answers, whereas a simi-

larity tool provides a probabilistic answerea number between

0 and 100. Note that the correct interpretation of the result is

not as an estimate of percentage of overlap between the two

objects. Rather, it is closer to a confidence level that the two

objects have non-trivial commonality between them. Thus,

onewould expect a higher number to yield lower false positive

rates.

In the following sections, we restrict ourselves to a high-

level summary of the design and operation of the tools being

evaluated. The lower-level details can be found in the refer-

enced publications.

2.1. Fuzzy hashes: ssdeep

The roots of Kornblum’s ssdeep (Kornblum, 2006) tool can be

traced back to Rabin’s seminal work on data fingerprinting

with random polynomials (Rabin, 1981), which spurned a long

line of research in the area of information retrieval. In the

interest of brevity, we omit a detailed overview of the area

(relevant discussion can be found in Roussev (2010)) and focus

on the specific algorithm used by ssdeep.

The tool produces context triggered piecewise hashes,

commonly referred to as fuzzy hashes. The idea is relatively

simple: a) break up the file into pieces using the result of

a rolling hash function; b) use another hash function to

produce a (small) hash for each piece; and c) concatenate the

results to produce the hash signature for the whole file.

Intuitively, we expect files that have common content

would exhibit some level of similarity in their signatures,

while unrelated ones would not. A key design decision here is

how to break up the file into pieces such that signatures

remain relatively resilient in the face of minor changes.

Choosing, for example, to hash every 4K disk block of a file

does not fit this requirementethe insertion of a single char-

acter at the beginning of the filewould change all block hashes

rendering our measurement too fragile.

The rolling hash function uses a small context of a few bytes

to produce a pseudo-random value hr. On every iteration, the

context slides forward by one byte and if hrhmod b� 1; b,

where b ¼ 2k, then the context is used as a breaking point.

Note that the rolling hash a very cheap to compute and that

the parameter b is chosen such that the expected length of the

signature does not exceed 80 characters. (If the signature

exceeds the limit, b is recalibrated and thewhole calculation is

redone from the beginning). A traditional, non-cryptographic

hash is used to produce a 6-bit hash for each piece in

between breaking points. The results are concatenated and

base64-encoded in the output.

To compare file signatures, the tool treats them as regular

strings and employs an edit distance measure borrowed from

early spam filters to determine a level of correlation. In

essence, it expects that, for related files, it would take rela-

tively few editing operations (insert/delete/change/swap) to

transform one signature into the other.

2.2. Similarity digests: sdhash

sdhash (Roussev, 2010) takes an altogether different approach

to produce, store, and compare its similarity hashes known as

similarity digests (sdhash ¼ s imilarity digest hash).

In short, sdhash tries to find from every neighborhood the

features (64-byte sequences) that have the lowest empirical

probability of being encountered by chance. Each of the

selected features is hashed and placed into a Bloom filter

(Bloom, 1970) (a probabilistic set representation). When a filter

reaches its capacity, a new filter is created until all the

features are accommodated. Thus, a similarity digest consists

of a sequence of Bloom filters and its length is about 2e3% of

the length of the input. The latter figure is based on the

current implementation where a filter is 256 bytes long with

128 elements and represents (on average) about 7e8 KB of

source data (higher densities are also practical).

Bloom filters have predictable probabilistic properties

(Broder and Mitzenmatcher, 2002), which allow for two filters

to be directly compared using a Hamming distance-based

measure Dð,Þ. The result gives an estimate of the fraction of

features that the two filters have in common that are not due

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 3 4eS 4 1 S35

to chance. To compare two digests, for each of the filters in the

first digest, the maximum match among the filters of the

second is found. The resulting matches are then averaged.

Formally, the similarity distance SDðF;GÞ for digests

F ¼ f1f2.fn and G ¼ g1g2.gm, n � m, is defined as:

SDðF;GÞ ¼ 1
N

Xn

i¼1

max
j¼1::m

D
�
fi; gj

�

It is notable that the empirical probability of encountering

a 64-byte feature can neither be directly estimated nor could

such observation be practically stored and looked up. There-

fore, the tool computes a normalized Shannon entropy

measure and places features into 1000 classes of equivalence.

The statistics are collected using this approximation.

Computing the entropy has the added advantage of

allowing some filtering of non-characteristic features to take

place. The rationale here is based on the observation (Roussev,

2009) that real-world data formats contain non-trivial

amounts of data that is either very low on information

content (repetitive blocks), or is format-specific, not object

specific (e.g., common header information). Such phenomena

lower the effectiveness of Rabin-style fingerprinting by raising

the false positive rate.

3. Controlled study

As discussed earlier, the purpose of the study is to evaluate

the tools using simulated artifacts in which we precisely

control the level of commonality between compared objects

and know the ground truth. It would be extremely difficult to

achieve such precision using real-world artifacts. The main

advantage of this “lab” setup is that it gives us an upper bound

on the capabilities of the tools under ideal conditions.

3.1. Experimental approach

In all the experiments, we use the same basic setup.We define

a target as a piece of data obtained from a (pseudo-) random

number generator. Thus, we can safely assume that no two

independently generated targets have any content in

common. An embedded object is a smaller piece of randomly

(and independently) generated data that we embed in our

target(s) with the explicit purpose of creating commonality.

For example, if we take two 1 MB targets T1 and T2 and embed

a 64 KB object O in each of them, we know that T1 and T2 have

exactly 64 KB in common.

To produce statistically significant results we need to

randomize both the content of the targets/objects and the

location of the embedded objects. For all experiments, we use

25 iterations of 40 placement runs for a total of 1000 obser-

vations. For each iteration, we generate fresh target(s) and

embedded object(s). For each placement run, we randomly

embed the object(s) as per our scenario and run the tools

accordingly.

We define similarity detection as successful if the tool

produces a positive number. From preliminary work, we know

that neither tool produces false positives for the uncorrelated

targets we generated so the true positive rate is the main

metric for the experiment. We define reliable detection as the

ability to detect correlation on at least 95% of the runs (950

positive observations).

All experiments were performed using ssdeep 2.6 and

sdhash 1.1, which were the current versions at the time of the

experiments.

3.2. Evaluation scenarios

Based on our initial list of requirements, we considered the

following three scenarios:

� Embedded object detection. This test aims to directly eval-

uate the ability of the tools to satisfy our first requirement.

That is, we measure the ability of the tool correlate known

embedded content and the whole object. For example,

whether a given JPEG is embedded in any of set of files/disks.

� Single-common-block file correlation. This test simulates

a situation where two files have a single common object.

This corresponds to requirements 2) and 3) where the files

share content. For example, documents sharing an image/

header/footer, or pieces of software sharing library code.

� Multiple-common-blocks file correlation. This test speaks to

requirements 4) and 5) where commonality might be

significant but fragmented. To get a sense of relative

performance, we use levels of commonality that we know

from the previous test to be well within the tools’ capabil-

ities, but split into smaller pieces. Generally, this is a more

difficult task and demands more precision from the tools.

3.3. Embedded object detection

To evaluate the effectiveness of embedded/trace object

detection, we gauge the sensitivity of the tool’s correlation

capabilities based on the size of the embedded object and the

target:

Given a data object O of fixed size (file, disk block) embedded in

a target T (file, disk image), what is the largest T for which O and T

can be reliably correlated?

Ideally, a tool’s performance should be scalable in that its

detection rates should depend on the size of the embedded

object, and not the size of the target. Formally, we define

reliable detection/correlation as true positive rate exceeding

95% (i.e., at least 95% of the individual runs return a value

greater than zero). By design, the false positive rate is zero in

all cases.

Table 1 summarizes the experimental results; for each

object size: it gives the maximum file size for which at least

95% true positive rate is achieved, for five different object

sizes. In searching for the limits, we have incremented file size

by 1/8 the size of the embedded object. This means, for

example, that for object size of 64 KB, for ssdeep, the detection

works reliably at 192 KB but fails our criterion at 200 KB.

For sdhash, the results given are for the maximum value

tested. Based on the observed performance and its correlation

algorithm, we expect that it would continue to reliably detect

all embeds (of the given sizes) regardless of the size of the

target. For ssdeep, it appears that the algorithm works reliably

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 3 4eS 4 1S36

as long as the embedded object is no smaller than 1/3 of the

size of the target.

To put the numbers in context, it is useful to consider some

typical file sizes. We calculated average file sizes for six

popular file types using a 50% sample (463,248 files) from the

NPS GovDocs (Garfinkel et al., 2009) corpus. The results are

given in Table 2

Based in the numbers, we can conclude that ssdeep would

not, for example, be able to detect an average embedded JPEG

(143 KB) inside an average compound document (doc/pdf/ppt/

xls) which is 516-1,982 KB in size.

3.4. Single-common-block file correlation

Given targets T1 and T2 that share a common data object O, what is

the smallest O for which the similarity tool reliably correlates the two

targets?

Table 3 summarizes the results; for each target size (both

targets are of equal size), it gives the minimum embedded

object file size for which at least 95% true positive rate is

achieved for file correlation.

It is evident that sdhash exhibits a predictable sub-linear

growth trend for the minimum embedded O, whereas the

growth for ssdeep fluctuates significantly. We have no reliable

insight as why the latter is the case; our best guess is that the

limit on the signature’s length plays at least some role, and

there are some difficult to predict effects from the editing

distance metric.

3.5. Multiple-common-blocks file correlation

Given targets T1 and T2 that share multiple common data objects,

what is the probability that the similarity tool will correlate the two

targets?

We simulate the embedding of a total amount of common

data that is 50%of the target’s size but is split into four andeight

(non-overlapping) pieces, respectively. Each piece is then inde-

pendepentlyandrandomlyplaced into the targets.Forexample,

for the 256 KB casewe consider the embedding (at random) of 4

pieces of 32 KB and 8 pieces of 16 KB. Table 4 shows the fraction

of runs that produce results greater than zero.

The average sdhash score was consistently 17e18 for all 4-

piece cases and 13e14 for the 8-piece ones; ssdeep scores

dropped from 25 to 35 straight to zero with no readings in

between.

3.6. Observations

Our controlled experiments lead us to several essential

observations:

� The correlation capabilities of ssdeep appear crucially

dependent on a large, continuous block of common data. On

average, a contiguous chunk of 1/4 to 1/3 of the size of the

files is necessary to guarantee detection for scenarios 1 and

2. Scenario 3 demonstrates that fragmentation of the

common data significantly impedes detection and makes it

unreliable.

� The correlation capabilitied of sdhash appear considerably

less dependent on a large common block and tend to be

correlated with the known level of commonality.

� At themargin of detection capability, ssdeep non-zero scores

tends to drop off from the 25e35 range straight to zero; we

were virtually unable to produce scores in the 1e20 range for

any of the experiments.

� At themargin, sdhash scores approach zero gradually, giving

ameaningful signal that detection capability is approaching

its limits; this supports filtering and prioritization of the

results.

4. Real data study

The main purpose of this study is to run the similarity tools

under realistic conditions and evaluate their utility and

Table 2 e File size statics from GovDocs corpus.

Average File Size in KB

doc jpg pdf ppt txt xls

575 143 516 1,982 1,067 1,118

Table 3 e Single-common-block file correlation (lower is
better).

Target Size (KB) Min Object Size (KB): 95% Detection

ssdeep sdhash

256 80 16

512 160 24

1,024 320 32

2,048 512 48

4,096 624 96

Table 1 e Embedded object detection (higher is better).

Object Size (KB) Max Target Size (KB): 95% Detection

ssdeep sdhash

64 192 65,536

128 384 131,072

256 768 262,144

512 1,536 524,288

1,024 3,072 1,048,576

Table 4 e Multiple-common-blocks correlation
probability (higher is better, 1.0 is optimal).

Targets Common 4 pieces 8 pieces

(KB) (KB) ssdeep sdhash ssdeep sdhash

256 128 0.35 1.00 0.04 1.00

512 256 0.48 1.00 0.04 1.00

1,024 512 0.39 1.00 0.07 1.00

2,048 1,024 0.59 1.00 0.17 1.00

4,096 2,048 0.96 1.00 0.54 1.00

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 3 4eS 4 1 S37

effectiveness in scouting out related files. Simply put, we run

the tools and then manually examine the results and decide

whether each identified correlation is real, or not.

One inherent impediment of this type of study (and amajor

reason we undertook the controlled study) is that it is infea-

sible to establish the ground truth on any set of non-trivial

size. Specifically, we cannot afford to manually examine all

of the almost 10million unique pairs of files in our sample and

classify them as positives/negatives. Nonetheless, the evalu-

ation scenario is representative of the real-world in which

examiners need to perform a similar classification task with

no prior knowledge. Further, this approach allows an apples-

to-apples comparison of the relative performance of the tools.

4.1. Experimental approach

We used a sample of the publicly available GovDocs corpus

(http://domex.nps.edu/corp/files/govdocs1/). These are real

files obtained by spidering US Government websites and are

free of copyright restrictions.

For our test set, which we refer to as t5, we used all files

between 4 KB and 16.4 MB in directories 000e004. Files below

4 KB (about 300) were eliminated since they contained a lot of

web server error messages and corrupted files. A few very

large files were also eliminated to avoid skewing the results

(ssdeep needs file sizes to be relatively close to each other

before it can compare them). We ended up with 4457 files

(1.8 GB); the actual file sample used is available for download

at http://roussev.net/t5/t5-corpus.zip. Table 5 provides a quick

summary by file type:

The size of the sample was based on some preliminary

runs and estimates of the number of file correlations that the

experimenter would have to manually review. The sample

was chosen from a sequence of neighboring directories since

we expect that to result in groups of genuinely correlated files

to be included. (Generally, files that are closer in numbering to

each other are more likely to have been retrieved from the

same server.)

4.2. Evaluation procedure

The sole criterion we use for determining true correlation is

syntactic commonality. Neither tool performs any kind of

semantic analysis; therefore, any correlation needs to be

visible rather quickly. For web pages, this almost always

means a common template (header/footer/navigation); for

office documents, and across different file types it means

common images, or large blobs of common text. Our evalua-

tion process was blind in that a common list of pairs was

generated from both tools and was examined without

knowing where a candidate pairing originated.

Before we proceed with the actual evaluation, we need to

understand the meaning of the tools’ output. They both

produce a number between 0 and 100 with the implication

that a lower numbermeans lower confidence level. Therefore,

we tried to objectively establish a threshold value (point of

diminishing returns) below which we should ignore any

positive results as the rise in false positives starts to over-

whelm the rise in true positives.

4.2.1. ssdeep threshold
Since no prior data was available, we studied the distribution

of scores for both true and false positive in an effort to

discover a pattern. Fig. 1 shows all scores obtained. It is

apparent that ssdeep’s similarity metric does not show any

obvious threshold point and that false positives are scattered

over a wide range.

It is also evident that there is just a single score left of 24.

This is entirely consistent with the behavior we observed

during the controlled experiment so we feel confident this is

not a function of the underlying data.

Another observation is the “comb” shape of the histo-

gramesome 1/3 of the possible score values are entirely

“missing”. This is not a problem, per se, as it appears to be

a function of the fact that, in the final output computation,

a number between 0 and 64 is scaled to the 0 to 100 range.

4.2.2. sdhash thresholds
The sdhash tool exhibits altogether different behavior as

shown on Fig. 2. As we approach the vicinity of zero, the

number of scores ramps up exponentially. To keep the

manual examination to a reasonable level, we decided not to

consider any scores below five.

Based on prior work (Roussev, 2009), which suggests that

a threshold value around 20e21 is a good choice, we examined

all file pairs for which the sdhash score was 12 and above. We

found that 21 is, indeed, a good choice for the threshold as

illustrated by Fig. 3. Further, we noticed that for text files

(includinghtml), the threshold canbedroppedall thewaydown

to fivewith no appreciable growth in false positives (Fig. 4).

To summarize, for ssdeep, we use no threshold value; for

sdhash we use a threshold of five if one of the files is a text file,

Table 5 e T5 corpus file frequencies by type.

doc gif html jpg pdf ppt text xls

533 67 1093 362 1073 368 711 250
Fig. 1 e Distribution of ssdeep scores.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 3 4eS 4 1S38

and 21, otherwise. (If a score is below the threshold, we count

it as if it were zero.) We should also note that the difference in

thresholds makes some intuitive senseeunlike text,

compound formats tend to have common data that is attrib-

utable to the file format, such as headers, fonts, andmetadata,

that is not file-specific. Thus, such files have ‘built-in’

commonality that is likely not significant from an investiga-

tive perspective.

4.3. Results and observations

Using the threshold values in the previous section, we

manually reviewed a total of 1699 unique file pairs for

syntactic correlations (commonality). Table 6 provides some

brief statistics. The “common” numbers refer to correlations

that have produced the same (positive/negative) result in both

tools.

The main results are summarized in Table 7, which gives

the number of true and false file correlations for each of the

tools, broken by file type. The ‘total’ column gives the total

number of known true positive correlations identified by

either tool. The vast majority of known correlations (98.65%)

are between files of the same type. The next to last row

(‘Mixed’) summarizes the cross-type correlations (both true

and false ones). The last row (‘All’) is the sumof all numbers by

type less the cross-type totals (the latter correlations are

counted twicee one for each type).

As an example, the first row should be interpreted as

follows: a total of 53 correlations involving at least one doc file

were identified by manual examination; ssdeep has success-

fully identified 40 of these (true positives) and has incorrectly

pointed at another 31 pairs (false positives); sdhash has iden-

tified 51 pairs at the cost of 7 false positives.

Based on the above numbers, we can calculate the stan-

dard information retrieval metrics of recall and precision. The

one caveat mentioned earlier is that we do not know the

ground truth and cannot reason about absolute measures of

true/false negatives. Therefore, we have to make the

assumption that the only positives are the ones discovered by

either of the tools and that, if a correlation is not discovered by

a tool, then it is non-existent. This works for our purposes as

we are trying to describe the performance of the tools relative

to each other, rather than in absolute terms w.r.t. ground

truth.

Recall rates measure the proportion of actual positives

which are correctly identified as such. In our case, this

translates into the fraction of true positives identified by one

method relative to the true positives identified by either

method (Fig. 5). In the extreme, if one method shows a ratio of

Fig. 2 e Distribution of all sdhash scores.

Fig. 3 e Distribution of document/image sdhash scores.

Fig. 4 e Distribution of text/html sdhash scores.

Table 6 e Evaluation statistics.

Total correlations examined 1,699

Total unique files examined 820

True positives 1,203

Common true positives 588

False positives 496

Common false positives 65

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 3 4eS 4 1 S39

one, it means that it completely subsumes the results of the

other (Fig. 6).

It is clear that sdhash consistently outperforms ssdeep

across the board with overall recall rates of 95% and 55%,

respectively. Another way to look at this data is that running

both tools offers minimal increase (6%) in additional discov-

eries (from 1124 to 1189) over running sdhash alone. At the

same time, running both tools leads to an 82% jump in iden-

tified correlations (653e1189) over running ssdeep alone.

Precision is a complimentarymeasure and can be thought of

measuring the cost of achieving the recall rate in terms of

false positives. Precision is defined as the ratio of true posi-

tives for the method relative to all outcomes (true and false)

for themethod. An idealmethodwould have no false positives

and would yield a perfect precision rate of one.

sdhash consistently outforms ssdeep across all categories,

and with overall precision rates of 94% and 68%, respectively.

One particularly sore point for ssdeep appear to be MS Office

documents with xls files providing an extreme example of

howwrong things can go. Upon close examination, the xls files

triggering the false positives are a group of small, 20e30 KB

files that are otherwise unrelated. We believe that these files

contained a lot of sparse data that confuses ssdeep; sdhash

considers such data uncharacteristic and leave it out in

picking its signature features.

It is worth mentioning that MS Office results relate only to

the original binary formats (doc/xls/ppt) and should not be

extrapolated to the newer (OOXML) standard based on

compressed XML (docx/xlsx/pptx). (The latter were not

included in the study simply because theywere not part of the

GovDocs corpus.) Of the presented formats, OOXML files most

resemble pdf but additional work needs to be done to under-

stand the performance on OOXML.

5. Conclusion

ssdeep In all cases, the correlation algorithm is highly depen-

dent on the presence of a large, continuous chunk of common

data. The fixed-size hash does not scale well and the suitable

range of target parameters is relatively narrow. Once outside

the comfort zone, similarity scores and correlation ability

dropped rapidly. There was no easily recognizable relation-

ship between the known level of similarity and the similarity

score making filtering and prioritization problematic.

On balance, ssdeep shows considerable limitations in its

ability to satisfy most of the requirements. In our view, such

shortcomings are a combination of methodological and

design choices.

sdhash In all cases, the tool demonstrated accuracy and

scalability with respect to target sizes, on average, out-

performing ssdeep by a wide margin. Average similarity

scores are highly correlated with the level of data common-

ality, allowing for filtering and sorting. Scores decreased

gracefully as the detection limits were approached. It appears

that its filtering mechanism gives it a significant precision

advantage when dealing with MS Office documents. That can

be explained by the fact that such files tend to have large blobs

of low-entropy data that confuse methods that do not filter.

On balance, sdhash demonstrated the potential to address

all five of the design requirements although further evaluation

is necessary to confirm that in working with real network and

RAM captures.

Table 7 e ssdeep vs. sdhash : True, false, and total known
positives.

Set ssdeep sdhash Total

TP FP TP FP

doc 40 31 51 7 53

html 550 47 985 52 1043

jpg 0 23 0 2 0

pdf 39 28 45 25 46

ppt 15 6 25 0 25

text 9 0 23 0 27

xls 2 199 11 3 11

Mixed 2 24 16 18 58

All 653 310 1124 71 1189

Fig. 5 e ssdeep vs. sdhash : Recall rates.

Fig. 6 e ssdeep vs. sdhash : Precision rates.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 3 4eS 4 1S40

r e f e r e n c e s

Bloom B. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM 1970;13(7):422e6. doi:10.
1145/362686.362692.

Broder A, Mitzenmatcher M. Network applications of bloom
filters: a survey. In: Annual Allerton conference on
communication, control, and computing, Urbana-champaign,
Illinois, USA; October 2002.

Garfinkel S, Farrell P, Roussev V, Dinolt G. Bringing science to
digital forensics with standardized forensic corpora. In:
Proceedings of the digital forensic research conference
(DFRWS); 2009. p. S2e11.

Kornblum J. Identifying almost identical files using context
triggered piecewise hashing. Digital Investigation 2006;vol.
3(S1):S91e7.

Rabin M. Fingerprinting by random polynomials, technical
report TR1581, center for research in computing
technology. Cambridge, Massachusetts: Harvard
University; 1981.

Roussev V. Building a better similarity trap with statistically
improbable features. In: Proceedings of the 42nd Hawaii
international conference on system sciences. Waikoloa
Village Resort, Hawaii, HI: IEEE; Jan 2009.

Roussev V. Data fingerprinting with similarity digests. In:
Chow K-P, Shenoi S, editors. Advances in digital forensics VI,
IFIP AICT, 337; 2010. p. 207e25.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 3 4eS 4 1 S41

	 An evaluation of forensic similarity hashes
	1 Introduction
	2 Background: ssdeep and sdhash
	2.1 Fuzzy hashes: ssdeep
	2.2 Similarity digests: sdhash

	3 Controlled study
	3.1 Experimental approach
	3.2 Evaluation scenarios
	3.3 Embedded object detection
	3.4 Single-common-block file correlation
	3.5 Multiple-common-blocks file correlation
	3.6 Observations

	4 Real data study
	4.1 Experimental approach
	4.2 Evaluation procedure
	4.2.1 ssdeep threshold
	4.2.2 sdhash thresholds

	4.3 Results and observations

	5 Conclusion
	 References

