
Chapter 1

MMR: A PLATFORM FOR LARGE-SCALE
FORENSIC COMPUTING

Middleware Support for MapReduce Processing

Abstract The timely processing of large-scale digital forensic targets demands the

empoyment of large-scale distributed resources, as well as the flexibility

to customize the processing performed on the target. We presentMMR–

a new, open implementation of the MapReduce processing model, which

significantly outperforms prior work on typical forensic tasks. It demon-

strates linear scaling for CPU-intensive processing and even super-linear

scaling for indexing-related workloads.

Keywords: Digital forensics, mapreduce, large-scale forensics, mmr, mpi mapre-

duce, cluster computing

1. Introduction

According to FBI statistics [3], the size of the average case has been

growing at an average annual rate of 35from 83 GB in 2003 to 277 GB

in 2007. With capacity growth outpacing both bandwidth and latency

improvements [8], forensic targets are not only getting bigger in absolute

terms, but they are also growing larger relative to our capabilties to

process them on time. With the price of 1.5TB hard drives dropping

below $200, it is difficult to overstate the urgent need to develop scalable



2

forensic solutions that can match the explosive growth in target size with

adequate computational resources.

The problem of scale is certainly not unique to the field of digital

forensics, however researchers and developers have been relatively slow to

recognize and address it. Generally, there are three possible approaches

to accommodate more processing in the same amount of time: a) im-

prove algorithms and tools; b) support the utilization of more hardware

resources; and c) support human collaboration. These are largely inde-

pent of each other and support large-scale forensics in complimentary

ways: the first approach allows more efficient use of machine resources,

the second allows more machine resources to be deployed, the third one

allows more human resources to be efficienty deployed in response to a

big challenge. In all likelihood, next generation forensic tools will have

to support all three approaches in order to be effective.

The focus of this paper is exclusively on supporting the use of com-

modity distributed computational resources to improve the turnaround

time of forensic investigations. Unfortunately, this topic has received

very little attention despite the fact that is a rather obvious means of

dealing with problems of scale.

1.1 Related Work

The earliest discussion appears to be [10], where an early prototype

and experiments demonstrate the great potential of using cluster re-

sources to speed up typical forensic functions. Specifically, it was demon-

strated that it is possible to achieve linear speedup, that is, speedup

proportional to the number of processors/cores in the system. Further,

for memory-constrained functions, it is possible to achieve super-linear
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speedup due to the fact that a larger fraction of the data can be cached

in memory.

ForNet [11] is another research effort aimed at distributed forensics

which is mostly concerned with the distributed collection and query of

network evidence, which is simply a different concern from ours. [7] is

an effort to take advantage of new hardware and software development–

the use of highly-parallel graphics processing units (GPU) for general-

purpose computing. The approach has the same goals as this work–bring

more hardware resources to the investigation process–and is inherently

complimentary to it. Obviously, using the CPU and GPU resources on

multiple machines will bring even more speedup than using a single one.

Recently, commercial vendors, such as AccessData, are starting to

include support for multi-core processors as part of their main prod-

uct line FTK 1, and provide limited distributed capabilities as part of

specialized tools, such as password cracking 2. At the same time, FTK

includes a heavyweight database back-end, which is undoubtedly capable

of managing terabytes of data but also uses precious CPU and memory

resources necessary for executing core forensic functions.

1.2 Background: MapReduce

MapReduce [4], is a new distributed programming paradigm, devel-

oped by Google, is aimed at simplifying the development of scalable,

massively-parallel applications that process terabytes of data on large

commodity clusters. The goal is to make the development of such ap-

plication easy for programmers with no prior experience in distributed

computing. Programs written in this style are automatically executed in

parallel on as large a cluster as necessary. All the I/O operations, distri-

bution, replication, synchronization, remote communication, scheduling,
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and fault-tolerance are done without any further input from the pro-

grammer who is free to focus on application logic. (We defer the techni-

cal discussion of the MapReduce model to the next section.) Arguably,

essential ideas behind MapReduce are recognizable in much earlier work

on functional programming, however, the idea of using map and reduce

functions as the sole means of specifying parallel computation, as well

as the robust implementation on a very large scale are certainly novel.

After the early success of the platform, Google moved all of their search-

related functions to the MapReduce platform.

Pheonix [9] is an open-source research protype, which demonstrates

the viability of the MapReduce model for shared memory multi-processor/

multi-core systems. It has demonstrated close to linear speedup for work-

loads that we believe are very relevant to forensics applications.

Hadoop [2] was developed as an open-source Java implementation of

the MapReduce programming model and has been adopted by large com-

panies like Yahoo!, Amazon, and IBM. The National Science Foundation

has partnered with Google and IBM to create the Cluster Exploratory

(CluE), which provides a cluster of 1,600 processors to enable scientist

to easily create new types of scientific applications using the Hadoop

platform. In other words, there is plenty of evidence the MapReduce

model, while not the answer to all problems of distributed processing,

fits quite well with the types tasks required in forensic application–string

operations, image processing, statistical analysis, etc.

The obvious question is: Is Hadoop an appropriate platform to im-

plement scalable forensic processing? One potential concern is that a

Java-based implementation is inherently not as efficient as as Google’s

C-based one. Another one is that the Hadoop File System (HDFS),

which is implemented as an abstraction layer on top of the regular file
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system, is not be nearly as efficient as the original Google File System [5].

From a cost perspective, it may make perfect sense for a large company

to pay a performance penalty if that would lead to a simplification of its

code base and make it easier to maintain. However, the average forensic

lab has very modest compute resources relative to the large data centers

available to most the companies adopting Hadoop.

2. MMR: MPI MapReduce

Based on the published results from prior work and our own expe-

rience, we can confidently conclude that MapReduce is a very suitable

conceptual model for describing forensic processing. From a practioner’s

perspective, the next relevant question is: Is the performance penalty

too big to be practical for use in a realistic forensic lab? If yes, can we

build a more suitable implementation? To answer these questions, we

developed our own prototype version, called MPI MapReduce, or MMR

for short, and evaluated its performance relative to Hadoop.

Our work builds on the Phoenix shared-memory imlementation of

MapReduce and the MPI (Message Passing Interface) standard 3 for

distributed communication. The essential idea is to start out with the

shared-memory implementation and extend it with the ability to spread

the computation to multiple nodes. MPI has been around for a while

and has found wide use on scientific and other high-performance applica-

tions. MPI was designed with flexibility in mind and does not prescribe

any particular model of distributed computation. While this is certainly

an advantage in the general case, it is also a drawback as it requires

fairly good understanding of distributed programming on part of the

developer who must explicitly manage all communication and synchro-

nization among distributed processes.
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Our goal was to hide MPI behind the scenes and to create a middle-

ware platform that allows programmers to focus entirely on expressing

aplication logic and not worry about scaling up the computation. This

becomes possible only because we assume the MapReduce model, which

allows us to automatically manage communication and synchronization

across tasks. We should also mention that by choosing MPI, we also

simplify cluster management. For example, one could easily (within a

day) create a dual-boot setup for a set of workstations in the lab that

could be used as a cluster to run long processing jobs overnight. Mod-

ern MPI distributions have become quite user-friendly and should not

present any major issues for administrators.

2.1 Conceptual Model

To avoid repetition, we provide only a brief description of the general

MapReduce model following the discussion in [4]; for a more detailed

discussion, please refer to the original paper.

The MapReduce computation takes a set of input key/value pairs,

and produces a set of output key/value pairs. The developer expressed

the computation as two programmer-provided functions–map and re-

duce. The former, takes an input pair and produces a set of intermedi-

ate key/value pairs. The run-time engine automatically groups together

all intermediate values associated with the same intermediate key I and

passes them on to the reduce. The reduce function accepts an interme-

diate key I and a set of values for that key, and merges together these

values (however it deems necessary) to form another (possibly smaller)

set of values. Typically, just zero or one output value is produced per

reduce invocation. The I values are supplied to the reduce function via
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an iterator, which allow for arbitrarily large lists of values to be passed

on.

As an illustration, consider the wordcount example–given a set of text

documents, count the number of occurences for each word. In this case,

the map function simply uses the word as a key to construct pairs of

the form (word, 1). Thus, if there are n distinct words in the document,

the run-time will form n distinct lists, and will feed them to n different

instances of the reduce function. The reduce function needs to simply

count the number of elements in its argument list and output that as

the result. Below is a psuedo-code solution from [4]:

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

Without getting into a detailed discussion, we should point out the

natural sources of data parallelism in this solution. For the map func-

tion, we can create as many independent instances (each of which ex-

ecutable in parallel) as we have documents. If that is not enough, we

could also split up the documents themselves. The reduce computation
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is also readily parallelizable–we can have as many distinct instances as

we have words. In general, we would expect that different instances of

the functions to take different amounts of time so it is the runtime’s job

to keep track of partial results and to load balance the cluster. Note

that the code written by the programmer is completely free of explicit

concerns with regard to the size of the inputs and outputs, and distri-

bution of the computation. Consequently, the system can transparently

spread the computation across all available resources. Further, it can

schedule redundant task instances to improve fault-tolerance and reduce

bottlenecks.

2.2 How MMR Works

Figure 2 illustrates the overall data flow in an MMR application. At

present, we use a single text or binary data file as the input. This is

done only to simplify the experimental setup and to isolate file system

influence on execution time. The system can just as easily use multiple

files as input. A file splitter function splits the input into N equal

blocks, where N is the number of machines (nodes) available. In our

experimental setup the blocks are created of equal size as the machines

we use are identical but the block-splitting can be quite different in a

heterogeneous setting.

Each node reads its own block of data and splits it up further into M

chunks according to the number of mapper threads to be created on each

node. Normally, that number would be equal to the level of hardware-

supported concurrency, i.e., the number of threads that the hardware can

execute in parallel. The chunk size is also related to the amount of the

on-board CPU cache–the system makes sure that there is enough room

in the cache for all the mappers to load their chunks without interference.
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Figure 1. MMR data flow

After the threads are created, each thread gets a chunk of data, and the

programmer-defined map function is called to manipulate that data and

to produce key/value pairs. If the programmer has specified reduction

function, the results are grouped according to keys and, as soon as all the

mapper threads complete their tasks, a number of reducer threads are

created to complete the computation with each reducer thread invoking

the programmer-defined reduce function. After the reduction, each node

has a reduced key/value pair list. If all the lists should be merged, each

node packs its result data into an data buffer and sends content in the

buffer to the master node (node 0). When the master receives data from

another node, it uses a similar reduce function to reduce the received

key/value pairs with its own result. This procedure repeats until all

the data from other nodes are reduced. Finally, the master outputs a

complete key/value list as the final result.
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Figure 2. MMR flowchart

Figure 2 illustrated the MMR flow of execution on each node and

the basic steps a developer needs to perform. All the functions with the

”mmr” prefix are MMR API functions supplied by the infrastructure.

The first step in this process is to invoke the system-provided mmrInit()

function, which performs a set of initialization steps, including MPI ini-

tialization. Next, the application invokes mmrSetup() to specify neces-

sary arguments such as file name, unit size, and number of map/reduce

threads on each node (optional), as well a list of application-defined

functions such as key comparison, map and reduce functions.

Many of the mandatory arguments have default values to simplify

routine processing. By default, mmrSetup() automatically opens and

memory-maps the specified files, although this behavior can be overri-



MMR: A Platform for Large-Scale Forensic Computing 11

den if the application needs access to the raw data (e.g., read header

information). After the data is mapped into memory, the splitData()

function calculates the offset and length of the data block on a node,

while setArguments() sets all the necessary arguments for map, reduce

and MPI communication.

After the above initialization steps, the application can calls mmr()

to launch the actual compuation. The final result list generated on

the master node and returned to the application. More complicated

processing may require multiple map/reduce rounds of computation. If

that is necessary, the applications invokes mmrCleanup() to reset buffers

and state information. After that, the application can set up and execute

another MapReducing (using mmrSetup() and mmr().

The mmr() function first calls mmrMapReduce() to do map/reduce

on a node. If a node is not the master, it must pack its result (a list of

key/value pairs) into an MPI buffer and sends the content of that buffer

to the master node. Since MMR does not know the data types of keys

and values, the developer must define a functions to pack/unpack the

data. This is routine code and a number of default functions are provided

for the most frequently used data types. If a node is the master, after

mmrMapReduce() it generates a hash table to store hashed keys. The

hash table is used to accelerate the later reduction of values on same

keys. The master receives byte streams from each node, unpacks them

into keys-value pairs, aggragates them into a list, and returns them

to the nodes for the reduction step. If an application does not need

each node to send its partial result to the master, it can shortcircuit

the computation by calling mmrMapReduce() rather than mmr(). The

mmrMapReduce() function does map/reduce on each node and returns
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a partial list of key/value pairs. If there is no need to further reduce and

merge the lists, then each node just uses its own partial list.

2.3 Implementation and Availability

Due to space limitations, a running code example and a full descrip-

tion of the API were not included in this paper. Instead, we created a

dedicated web site where readers can download the code and read related

how-to documents. The address is: (anonymized).

3. Performance Evaluation

The primary purpose of this section is to compare the performance of

the MMR and Hadoop. We also quantify the scalability of MMR for

a set of applications by comparing it with baseline serial implementa-

tions. To provide a fair comparison, we used three Hadoop examples as

provided by the system developers and wrote functional equivalent in

MMR . We did not make any changes to the Hadoop examples except

to add a time stamp to calculate execution time.

3.1 Test environment

MMR has fairly modest hardware requirements: a cluster of net-

worked Linux machines, a central user account management tool, gcc

4.2, ssh, gunmake, OpenMPI, and a file sharing system. Certainly bet-

ter machines provide more benefits but, as our experiments show, even

more modest hardware provides tangible speedup. For our experiments

we used two ad-hoc clusters made up of lab workstations. The first one,

Cluster #1, consists of 3 Dell dual-core boxes, whereas Cluster #2 has

3 brand new Dell quad-core machines. Table 1 gives the configuration

of the machine in the clusters. (Note: the quad-core machines were run
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Cluster #1 Cluster #2

CPU Intel Core 2 CPU 6400 Intel Core 2 Extreme QX6850

Clock (GHz) 2.13 3.0

Number of cores 2 4

CPU Cache (KB) 2048 2 x 4096 KB

RAM (MB) 2048 2048

Table 1. Hardware configuration

on a 2GB RAM configuration to make the results comparable–normally

they have 4GB.) All machines were configured with Ubuntu Linix 8.04

kernel version 2.6.24-19, Hadoop, and MMR . The network setup in-

cluded the standarda, built-in Gbit Ethernet NICs and a CISCO 3750

switch.

Note that the Hadoop installation uses the Hadoop Distributed File

System (HDFS), whereas MMR just uses NFS. HDFS separates a file

into many chunks and distributes them into many nodes. When a file is

requested, each node sends its chunks to the destination node. However

the NFS file system uses just one file server; when a file is requested,

the server has to send the whole file to the destination node. There-

fore, in general, the HDFS performance better than NFS, which means

the MMR implementaion spends more time on opening a file than the

comparable Hadoop tool. However, for the purposes of our tests, we

virtually eliminated such effect by forcing the caching of the files before

the timed execution.

We have rewritten the following three Hadoop samples for MMR :

wordcount, pi-estimator, and grep. The wordcount program calcu-

lates the number of occurrence of each word in a text file, the pi-estimator

program calculates an approximation of PI based on the Monte Carlo
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estimation method. The grep program searches for matched lines in a

text file based on the regular expression matching. wordcount and grep

are text processing programs, whereas and pi-estimatoris computa-

tionally intensive with virtually no communication and synchronization

overhead. The functionally of Hadoop grep is weaker than the regular

Linix command–when searching a specific word in a file, Hadoop grep

just returns how many times this specific word appears in the file. How-

ever in Linux the grep command returns the line numbers and the whole

lines. MMR grep can return the line numbers and the whole lines back

like the Linux grep. However, to produce apples-to-apples comparison,

we modified some MMR grep functions and made it return just the

counts.

Evidently, for I/O-bound programs, launching more map processes

would not increase the performance of either tool. However, for CPU-

bound code, launching more map processes than the number of pro-

cessing units tends to improve the MMR performance; for Hadoop,

that is not the case. We recommend that, when performing computa-

tion programs, setting the number of map processes to 3-4 times of the

computation nodes; however, when performing file processing programs,

setting the number of map processes to the computation nodes.

3.2 Benchmark Execution Times

We tested wordcount and grep with 10MB, 100MB, 1000MB and

2000MB files, and pi-estimatorwith 12,000 to 1,200,000,000 points.

All our testing results are averages over 10 run at the optimal settings

(determined empirically), first and last runs are ignored. All experiments

are performed on Cluster #2. For wordcount, MMR is about 15 times

faster than Hadoop for the large (1GB+) files and about 23 times for the
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Figure 3. MMR vs Hadoop: execution times for three example applications

small ones. For grep, in the worst case MMR, is about 63 times faster

than Hadoop. For pi-estimator, the purely computational workload,

MMR is just over 3 times faster for the large point set. Overall, it is

evident that Hadoop has significantly higher startup costs so the times

from the longer runs should be considered more representative.

3.3 Scalability

Let us now consider the efficiency with which the two implementations

scale up and use available CPU resources. Table 4 compares the execu-

tion times for each of the three applications under MMR and Hadoop on
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each of the two clusters. pi-estimatoris a trivially parallelizable appli-

cation which we would expect to scale up proportionately to hardware

improvements of the CPU. We do not expect caching or faster memory

to make any difference. Since the two processors are successive designs

with virtually the same architecture, it all boils down to number of cores

and clock rates. Thus, given twice the number of cores and 50% faster

clock, one would expect speedup in the order of 3 times.

Indeed, the actual execution times do show the expected 3 times im-

provement. By contrast, the Hadoop version shows only 50% improve-

ment, which we have no ready explanation for, especially given the 3

times improvement on the wordcount benchmark. In wordcount, our

implementation achieves 4.2x speedup, which exceeds the pure CPU

speed up of 3 times due to faster memory access and larger caches.

For grep, which is a memory-bound application, the speedup is domi-

nated by faster memory access, with minor contribution from the CPU

speedup. We could not measure any speedup for the Hadoop version.

3.4 Super-linear and sub-linear speedup

So far we have seen that, for CPU-bound applications, MMR is able

to efficiently take advantage of available CPU cycles and deliver speedup

close to the raw hardware improvements. In a realistic setting, we would

expect a significant number of applications not to adhere to this model

and we now consider the use of MMR in such scenarios. Specifically,

we compare the speedup of two MMR applications–wordcount and

bloomfilter–relative to their serial version, using Cluster #2. In other

words, we compare the execution on a single core versus execution on

12 cores.
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Figure 4. MMR vs Hadoop: benchmark times on Cluster #1 and Cluster#2

We consider two applications–wordcount (same as before) and bloomfilter.

The bloomfilter application hashes a file in 4KB blocks using SHA-1

and inserts them into a Bloom filter [1]. Then, a query file of 1GB is

hashed the same way and the filter is queried for matches. If such are

found, the hashes triggering them are returned as the result. In the test

case, the returned result would be about 16MB. To isolate and under-

stand the effects of networking latency, we created two versions: MMR

and MMR Send. The former completes the computation only sends a

total count back, whereas the latter send the actual hash matches back

to the master.

Figures 5 and 6 show the performance results. As before, we observe

that wordcount scales in a super-linear fashion with 15.65x speedup.

In fact, the relative speedup factor (speedup/concurrency) is about 1.3,

which is very close to the 1.4 number obtained earlier across the two

clusters. Again, this is likely due to beneficial caching effects and is
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great news because the core wordcount computation is closely related

to the computations performed during indexing.

In the bloomfilter case, because the computation is relatively simple

and the memory access pattern is random (no cache benefits), memory

and I/O latency become the bottleneck factor to speedup. Looking at

the 1 and 2GB cases, we see that the MMR version gets consistently

a speedup factor of 9, whereas the MMR Send version achieves only

6. For longer computations, overlapping network communication with

computation would help hide some of the latency but, overall, this type

of workload cannot be expected to scale as well as the previous one.
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4. Conclusions and Future Work

Digital forensic tool developers are in critical need of scalable devel-

opment platforms that can automatically take advantage of distributed

compute resources. The MapReduce model has recently gained pop-

ularity and the backing of major industry players as a viable option

to quickly and efficiently build scalable distributed applications and has

been adopted as a core technology by the top two web search companies–

Google and Yahoo!.

In this work, we introduced a new open implementation–MPI MapRe-

duce (MMR )–which significantly outperforms the leading open-source

solution Hadoop. We showed that, unlike Hadoop, we can efficiently and

predictably scale up a MapReduce computation. Specifically, for CPU-

bound processing, our platform provides linear scaling with respect to

the number and speed of CPUs provided. For the wordcount applica-

tion, which is closely related to common indexing tasks, we demonstrated

super-linear speedup, whereas for I/O-bound and memory-constrained

tasks the speedup is substantial but sub-linear.

Based on this initial evaluation, and our development experience, we

can confidently conclude that the proposed MMR platform provides

a promising basis for the development of large-scale forensic processing

tools. Our next short term goals are to scale up the experiments to

tens/hundreds of cores, and develop specific tools that can deal with

actual terabyte-size forensic targets in real-time.
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