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a b s t r a c t

Digital forensic tools are being developed at a brisk pace in response to the ever increasing

variety of forensic targets. Most tools are created for specific tasks – filesystem analysis,

memory analysis, network analysis, etc. – and make little effort to interoperate with one

another. This makes it difficult and extremely time-consuming for an investigator to build

a wider view of the state of the system under investigation. In this work, we present FACE,

a framework for automatic evidence discovery and correlation from a variety of forensic

targets. Our prototype implementation demonstrates the integrated analysis and correla-

tion of a disk image, memory image, network capture, and configuration log files. The

results of this analysis are presented as a coherent view of the state of a target system,

allowing investigators to quickly understand it. We also present an advanced open-source

memory analysis tool, ramparser, for the automated analysis of Linux systems.

ª 2008 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The leading challenge for digital forensic investigations is that

of scale. According to FBI statistics, the average case size has

tripled in 3 years – from 80 GB in FY 2003 to 250 GB in FY

2006 (FBI, 2006). This trend has had a significant impact on

the field operations at digital forensic labs. Indeed, the mere

acquisition, extraction and pre-processing of the data sources

create a long list of technical problems and add to the already

long turnaround times. However, a deeper and more signifi-

cant implication of recent trends is the escalating complexity

of scenarios of digital investigations. As the capabilities of

individual applications, the size of forensic targets, and the

number of networked systems all increase, the number of

possible interactions and possible outcomes of forensic inter-

est grows exponentially. The vast majority of current forensic

tools focus on extracting first-order information about

individual artifacts – name, size, location, timestamps,

keywords, etc. – and presenting it to the investigator. This

leads to a browse-and-search approach to the investigation

that leaves all the tedious work of ‘‘connecting the dots’’ to

the investigator. As the complexity of systems grows rapidly,

it becomes ever more difficult for an investigator to perform

thorough, reliable, and timely investigations.

In our view, developers of digital forensic tools must adopt

a broader, scenario-driven philosophy to tool development.

We must recognize that merely swamping the user with all

available data, or presenting basic search and filtering tech-

niques, falls well short of what is actually needed. In general,

most investigations can be reduced to four basic questions: (a)

what happened? (b) when did it happen? (c) how did it

happen? and (d) who did it? Along those lines, extracting the

filesystem MAC times, for example, is usually a necessary

step in establishing the sequence of events that led to the

observed state of the system. However, merely providing

tens of millions of timestamps to the investigator is not, by

itself, very useful. The investigator would likely correlate

MAC data with timing data from other available sources,

such as MAC times from other filesystems and timestamps

from available network logs/traces. From an engineering
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perspective, it is clear that the task of extracting timing data

from different sources should be split among different func-

tional modules, and the correlation analysis aspect should

be handled separately. The current state-of-the-art, however,

is dominated by monolithic proprietary tools with very limited

analytical abilities and individual, open-source tools that

focus on performing specific extraction tasks but have virtu-

ally no analytical facilities.

The presented work is inspired by the 2008 DFRWS Chal-

lenge (http://dfrws.org/2008/challenge/) and seeks to make

two distinct contributions. First, we present a set of new tools

that perform deep analysis of Linux physical memory images.

Second, we present a proof-of-concept environment, called

FACE, which illustrates our vision of an integrated approach

to the forensic analysis of computer systems by bringing

together the information generated by the different tools.

Specifically, we demonstrate the ability to automatically

correlate events and objects among a memory image, filesys-

tem image, and network capture. As the resulting discussion

shows, this approach can significantly speed up the investiga-

tive process by providing a higher-level, logical view of related

events and objects. This also results in an intuitive interface

that allows the investigator to follow leads and filter out irrel-

evant data in a natural way.

2. Related work

A number of tools have been proposed for forensic analysis,

including commercial offerings and a variety of open-source

tools. Most of these tools operate on only a single type of dig-

ital evidence (e.g., a memory dump, a disk image, or network

traces). A selection of the most relevant tools is discussed

below, categorized by the primary type of digital evidence

that they process.

2.1. Disk analysis tools

FTK (The Forensic Toolkit, http://www.accessdata.com) and

Encase (http://www.guidancesoftware.com) are commercial

digital forensic suites that offer a point-and-click interface

for analyzing captured disk images. The Sleuthkit and

Autopsy (Carrier) provide an open-source alternative to com-

mercial suites, allowing analysis of disk images at multiple

levels, from individual data units through the filesystem layer.

Carrier (2005) provides an excellent reference for filesystem

forensics. When filesystem metadata is missing or damaged,

file carving tools such as Scalpel (Richard and Roussev, 2005)

or Foremost (The Foremost File Carver, http://foremost.sour

ceforge.net) can be used to carve sequences of bytes into

recovered files.

2.2. Live forensic tools

Encase Enterprise edition (http://www.guidancesoftware.

com) adds live forensic capabilities for enterprise networks

by deploying software agents on machines to be monitored.

These agents can capture memory and perform other moni-

toring activities under the supervision of a forensic analyst.

The Mobile Forensic Platform (Adelstein, 2003), now called

the OnlineDFS in its commercial incarnation, allows remote,

live investigation of forensic targets without the need to

install software agents on the machines under investigation.

Administrative credentials are used to retrieve a variety of

information about the running system, including process lists,

open files, and networking statistics.

2.3. Off-line memory and log analysis tools

There is increasing interest in performing deep memory

analysis as a standard part of digital forensic investigation,

because a substantial amount of potential evidence is lost if

this source is ignored. Recent students have illustrated that

data persists for a long time in volatile memory (Chow et al.,

2004; Solomon et al., 2007). Unlike tools that analyze running

machines, such as Encase Enterprise and OnlineDFS, off-line

memory analysis tools extract digital evidence directly from

physical memory dumps. These memory dumps may be

acquired using a number of different mechanisms (dependent

on OS type and version), from hardware-based approaches

such as Tribble (Carrier and Grand, 2004) and via Firewire

(Boileau) to software-only approaches, such as using dd to

access the physical memory device or via insertion of custom

kernel modules. These memory dumping mechanisms are not

infallible and some high-tech approaches to subverting mem-

ory acquisition have been proposed (Rutkowska, 2007). Fortu-

nately, unless the subversion mechanism is very deeply

embedded in the OS, a substantial amount of overhead may

be incurred to prevent acquisition, potentially revealing the

presence of a malicious agent (Kornblum, 2006). A recently

released tool provides another alternative for memory acqui-

sition, by converting Windows hibernation files to usable

memory dumps (Ruff and Suiche, 2007). Finally, a novel

approach to memory acquisition called BodySnatcher, involv-

ing injection of a small, forensic OS that subverts the running

OS, was presented at DFRWS 2007 (Schatz, 2007).

Surprisingly, there has been little work in deep parsing of

Linux memory dumps. idetect (Burdach) is a proof-of-concept

tool that parses 2.4-series memory dumps and enumerates

page frames, discovers user mode processes, and provides

detailed information about process descriptors. Urrea (2006)

discusses many of the relevant OS structures that must be

parsed to extract digital evidence from Linux memory dumps.

Recently, a number of utilities for parsing Windows mem-

ory dumps have been developed, with a primary catalyst being

the 2005 DFRWS memory analysis challenge (http://dfrws.org/

2005/challenge/). The Volatility Framework (https://www.

volatilesystems.com/default/volatility) extracts information

from Windows XP SP2 memory dumps, including a list of

running processes, open network connections, loaded DLLs,

and Virtual Address Descriptor (VAD) (Dolan-Gavitt, 2007)

information. The knttools (http://www.gmgsystemsinc.com/

knttools/) dump information about processes, threads, access

tokens, the handle table, and other OS structures from a Win-

dows memory dump. memparser (http://sourceforge.net/

projects/memparser) is capable of outputting similar informa-

tion. Cross-referencing is used to detect hidden objects.

Schuster’s ptfinder tools (Schuster, 2006 a,b) take a different

approach and instead of walking OS structures, attempt to

carve objects that represent threads and processes directly
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from the memory dump. This allows hidden processes to be

more easily discovered and can also reveal information about

recently terminated processes. Kornblum (2007) uses ad-

vanced address translation techniques to create a more com-

plete picture of system memory. In (Arasteh, 2007) a method

is presented for partially reconstructing process execution his-

tory from a memory dump. Vidas (2006) provides an overview

of several memory acquisition tools for Microsoft Windows.

The system most closely related to ours is PyFlag (http://

www.pyflag.net), which allows viewing of log files, network

traces, windows memory dumps (by incorporating Volatility),

and other data within a common framework.

Our system is differentiated primarily by its correlation

capabilities. Unlike the tools discussed above (with the excep-

tion of PyFlag), our framework allows an investigator to

quickly organize and correlate evidence from a number of

sources, including memory dumps, network traces, and

filesystem images. While PyFlag does handle multiple sources,

our tool goes one step further by providing views of related

data across multiple sources. For example the ‘‘user’’ view

displays the name and user id of the user, running processes

owned by the user, and network sockets and files owned by

the processes. Similar views exist for processes, files, etc.

This enables the investigator to quickly target interesting

evidence and follow sequences of events that provide a ‘‘big

picture’’. In addition, our RAM parsing component for Linux

performs deep analysis, revealing not only common informa-

tion such as a list of running processes and open file handles,

but also deeper information, such as network packets pending

on open network connections.

3. ramparser: a Linux memory analysis tool

Due to the lack of available memory parsing tools for Linux,

we developed a new tool called ramparser that performs

deep analysis of Linux memory dumps. Specifically, the

current version is able to handle a range of 2.6 kernel variants.

The information provided by ramparser from the memory

dump includes running processes, open network connections,

in-kernel socket buffers, loaded kernel modules, and a specific

process’ memory-mapped and open files, code, and data. For

experienced UNIX users, the tool is capable of simulating

commands such as ps, lsmod, and netstat. It is also capable

of writing out process-specific information and data to files

for later investigation. The main point of ramparser is to

provide detailed output about all running processes that can

be used by FACE’s correlation engine.

3.1. Initialization

All process-related operations rely on having the valid kernel

virtual address of init’s task_struct. Because of this the first

thing that ramparser does is scan the memory dump and locate

the init process’ address by carving task_struct’s from memory

until one is found with a pid of 1. After this, ramparser will be

able to walk the entire list of active processes. The address of

init_mm is set next so that we can find paged data in the kernel.

The kernel convention is to use init_mm as the page directory

pointer for any in-kernel data which requires paging instead

of being identity mapped. After these values are set, the

program parses the user supplied arguments and performs

the desired analysis.

3.2. Generic validation

In order to reliably walk large amounts of memory and find

valid structures, common routines were created to validate

specific data structures used often in the kernel. For example,

the list_head data structure, which implements circularly

linked lists in the kernel, contains two members, next and

prev. In order to help debugging use after free(), these mem-

bers are set to poison values after being freed. This creates

only two possible values for the members, either a valid kernel

pointer or their respective poison values. Incorporating these

restrictive ranges and others when searching for various data

types allows the program to run quickly and with few false

positives. The most reliable and useful types to validate are

lists, enums, stack-based character buffers, and kernel

pointers which cannot be null. Enums are very useful for

eliminating false positives because they generally have a small

range of valid values. Similarly, the kernel uses many integers

as enums, only allowing values such as �1, 0, or 1 to be

assigned. Stack-based character buffers are excellent for

debugging since they can be easily printed, and validating

the strings helps reduce false positives. Kernel pointers that

cannot be null also have a relatively small range, i.e.,

PAGE_OFFSET to 0xffffffff on 32-bit systems. The possibility

of pointers being null is not useful since RAM generally has

many zero filled areas and accounting for them slows down

searching. Less useful for searching, but still accounted for,

are some integers and shorts which should never have nega-

tive values.

3.3. Finding task_struct’s

Finding task_struct’s is very reliable since the structure

contains an enum for the sleep type, a stack-based character

buffer for the process name, many non-null kernel pointers,

unsigned integers, and lists. By validating the numerous

members of the structure as it walks memory, the program

rarely produces false positives. The -d option to ramparser

will parse the memory image for task_struct’s and print the

relevant members.

3.4. Retrieving process information

After finding init it is then possible to walk the ‘tasks’ member

of init’s task_struct which holds the linked list of all active

tasks. Partially simulating the ps(1) command is a simple oper-

ation, involving walking the process list and printing out

detailed information for each process. More useful operations

such as walking a process’ memory maps, open files, and net-

work sockets are possible by using similar constructs already

used in the kernel. The ramparser -x option performs the

simple ps(1) operation. See Fig. 1 for a sample process listing.

d i g i t a l i n v e s t i g a t i o n 5 ( 2 0 0 8 ) S 6 5 – S 7 5 S67



3.5. Finding mapped files

Under Linux, virtually contiguous mapped regions with the

same permissions are represented by a vm_area_struct. These

represent a process’ stack, heap, code section, data section,

the data and code section of shared libraries, shared memory,

and anonymously mapped memory. These structures can be

viewed on a running machine by executing ‘cat/proc/<pid>/

maps’ for the process of interest. ramparser’s -p options simu-

lates the maps file for a process by walking the list of

vm_area_struct structures that are contained within the pro-

cess’ mm_struct and printing the starting and ending address,

permissions, and the mapped file’s name, if available. The -v

option of ramparser will write the memory pages covered by

a process’ vm_area_struct’s to disk. Since these areas are

paged, each memory region is handled 4096 bytes a time

when determining the offsets of the data. Using these offsets,

an investigator can completely recreate the running process at

the time the memory image was taken. See Fig. 2 for sample

output for an FTP process.

3.6. Finding open files

The process descriptor contains a files_struct structure which

includes a struct fdtable which holds an array of struct file struc-

tures. By following these links, it becomes easy to traverse all

the file descriptors of a process. Each file descriptor is repre-

sented by a struct file which ramparser uses to extract the

open files, their permissions, and file descriptor number. Files

with forensic interest include open files on disk, pipes, and

sockets. This information can be viewed on a running system

by executing ‘ls-l/proc/<pid>/fd’. ramparser simulates this

functionally in the -o option by walking the file descriptor

array and printing the file descriptor number and name of

the file opened. Filenames for files on disk are simply their

full pathnames, while names for sockets and pipes are formed

by joining socket[<inode number>] and pipe[<inode

number>], respectively. See Fig. 3 for sample output for an

FTP process.

3.7. Finding sockets/netstat information

Since UNIX systems treat sockets as file descriptors, informa-

tion about open network connections can be gathered by

analyzing a process’ socket file descriptors. Each socket is

represented by a struct socket which contains a pointer to the

struct_sock for the socket. The socket structure contains the

socket’s family, protocol, receive and send queues, and state.

The inet_sock structure representation of struct_sock gives the

source and destination addresses and ports. Using this infor-

mation it is possible to implement a netstat(8) like functional-

ity. ramparser simulates netstat for all sockets when run with

the -N option or gives information about a single process

when run with -n. See Fig. 4 for sample netstat output.

3.8. Finding network buffers

Most network investigations involve packet captures taken

from the hostile network after suspicious activity is detected.

By using the internal kernel network structures it is possible to

get even more information related to the network activity at

the time of the memory dump. A network socket buffer is

represented by struct sk_buff which contains protocol-specific

information and points to the beginning and end of a complete

packet. Inside each struct sock structure is a receive queue and

a send queue of socket buffers which hold data yet to be

processed. By collecting these queues from open sockets,

data that is yet to be sent out or data that is yet to be processed

by a userland application can be gathered and associated with

a specific process. Our experiments revealed that the receive

queue was usually empty since userland servers process

data very quickly, which removes the buffers from the queues.

Fig. 1 – ramparser ps output.
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Unlike the receive queues, however, the send queues were

generally full during large file transfers. Tests were run

uploading files through FTP to outside networks, and

ramparser was able to recover large parts of the files being

transferred. ramparser’s -k and -q options can be used to

dump the send and receive queues of a process to files.

3.9. Finding loaded modules

Loadable modules allow users to insert code dynamically into

a running kernel. While this has obvious advantages, it is also

a very common entry point for rootkits and other malware to

run kernel level code. Modules are represented in the kernel

by a struct module which is defined in include/linux/module.h.

ramparser is able to find loadable modules in memory with

rare false positives due to the module structure containing

an enum, list, stack-based character buffer, and many kernel

pointers. Searching for modules is the slowest part of the

code since many of the pointers can be null. This decreases

the performance of address validation. After locating a valid

struct it is possible to recreate output obtained from the

lsmod(8) command as viewed on a running Linux machine.

4. FACE: Forensics Automated
Correlation Engine

Memory analysis is just one component of a forensic investi-

gation and most of the answers to the four questions we posed

(e.g., ‘‘what happened?’’, ‘‘when did it happen?’’, etc.) require

Fig. 2 – FTP process mappings.

Fig. 3 – Listing of open files for FTP process.
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a more complete view of the system. Such a view is possible if

all available information is considered, including the memory

dump, filesystem, log files, and network traces. The memory

dump allows for reconstruction of all processes that were

running on the system, and for per-process analysis, such as

collecting open files, active sockets, and memory mappings.

The packet capture contains timestamps and streams which

can be used to easily match network traces to active sockets

on the system. The wtmp and utmp files store information

about when users logged in, their login location, and the

time of login. Timelines and the correct order of events are

critical during investigations, and by using the timestamps

from both the login files and network traces the engine can

accurately frame what actions a user performed during

specific times. The passwd and group files map users to their

user id, group id, home directory, and login shell. On-disk

metadata and kernel structures only refer to user ids and

group ids which are not friendly to a user, but by incorporating

information from the passwd and group files, the UI can pres-

ent the user with the names representing these groups and

users. This also speeds up investigations since a user can be

quickly identified based on their username.

We propose a framework which provides automated pars-

ing of multiple forensically interesting objects and correlation

of the results between them. The five main objects used for

data are memory dumps, network traces, disk images, log

files, and user accounting and configuration files. A fairly

complete reconstruction of the state of the running machine

and its network activity becomes possible by fully parsing

and analyzing these sources. By correlating the information,

we are able to link data in a network trace back to the user

who started the process which caused the traffic. This is

possible by first matching an open socket in the memory

dump to packets in the network trace. Since we know what

process owns the open socket, we can then determine what

user started the process and from where they logged in. It is

also possible to determine what file on disk was being trans-

ferred by observing the open files of the process. Our system

can also correlate data currently queued in the kernel’s

network stack with data of the network trace. Partially trans-

ferred files can be fully reconstructed by joining these two sets

of data together. Analysis of malicious or unknown binaries or

processes is made easier as the framework allows the user to

download all or part of a process’ memory or a file’s data.

Similarly, sections of memory can have more traditional

forensic procedures applied to them such as file carving and

hashing. Our framework also allows an investigator to get

categorized views of disk and user activity at the time of the

memory dump. Using FACE, it is possible to display all activity

from a single user such as open files, active network connec-

tions, and running processes.

The rest of this section describes the various components

in our framework, including parsers for network traces,

configuration and log files, and the correlation engine.

Fig. 4 – ramparser netstat output.
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4.1. Parsers

In addition to ramparser, described in Section 3, we imple-

mented additional parsing tools, discussed below.

(1) Pcap parser: to avoid duplicating the effort of excellent

network capture parsing tools like Wireshark, we opted

to implement a much simpler module for parsing captures

into a format for the correlation engine to work with. Our

module reads in a pcap-format capture file and breaks it

down into streams. Here we define streams as a collection

of packets having the same source and destination ip

address and port. This allows the correlation engine to

display inflows (collections of packets originating from

the host) and outflows (those packets originating from

elsewhere but destined for the host). For each of these

streams the module outputs the type: TCP or UDP (other

protocols are not currently implemented), and a list of

the packets in the stream. For each packet in the list, we

output the timestamp from the pcap header for the packet

and the beginning and ending offsets of the packet in the

capture file. Output is to a plain text file in a LISP-like s-

expression format.

(2) Configuration/log file parsers: in order to glean more infor-

mation from the target system, we wrote three simple

modules to parse a selection of files from the target filesys-

tem. First, we parse /etc/passwd for information about

users on the system (home directory, default shell, the

contents of the comment field, etc.) and user id to user-

name mappings. The next module parses /etc/group for

group membership information and group id to group

name mappings. The third module parses /var/log/wtmp.

This binary format file contains information on user logins

to the system – namely the username, time and date of

login, and where the login was from (local or some remote

host). Each of these modules outputs a text file in a format

similar to the one used for the pcap parser. Note that the

files chosen are only a small subset of the forensically

interesting files in the filesystem. In the future we intend

to implement similar modules for many other interesting

files (e.g., /var/log/messages).

4.2. The FACE correlation engine

The overall vision behind FACE is to be an extensible platform

for correlating and visualizing the logical connections among

objects and events discovered by various evidence-collection

tools. Clearly, both the correlation and visualization aspects

are open-ended problems and our goal is to build the essential

framework around which ever more sophisticated correlation

and visualization components can be attached. This approach

will also open up the opportunity to adapt established

solutions from other areas to the forensic domain.

In its first incarnation, FACE is web-based and pulls

together results from a number of standalone forensics and

system administration utilities to present a hyperlinked inter-

active report. The tool is written in Common Lisp, and uses an

internal database to store and relate the various conceptual

units (such as user identities, filenames, etc.) together.

Currently, the tool knows how to read output from our ram-

parser, most Linux filesystems, the login log file (wtmp), the

/etc/passwd file, the /etc/group file, and pre-processed pcap

files. Adding support for new sources of data involves writing

an input function, a display function, and correlation func-

tions. The implementation of input and display functions

can be greatly simplified by using our standard output format.

Activating the new additional capabilities is done by updating

the tool’s configuration file; no further software integration

effort is necessary.

The current version of FACE presents users with five main

data views: users, groups, processes, filesystem, and network

captures. Each of these main views can display a listing of all

entries in that category, or a particular entry in more detail.

Most fields in the detailed view are displayed as hyperlinks

to related information (possibly viewed in a different tool).

The user list displays the user’s name, their UID, GID

(linked to the group entry), the comment field from /etc/

passwd, their home directory and shell (linked to their entries

in the filesystem), and a count of currently running processes

for that user.

In the detailed user view, some additional information is

presented, such as last login time, and a listing of all processes

run by that user, and a list of all files currently opened by that

user. This view is composed of information obtained by corre-

lating data from ramparser, wtmp, /etc/passwd, and /etc/

group. The files and processes are linked to their respective

detail screens.

The groups view displays a listing of all groups, detailing the

name of the group (as a link to the group’s detailed entry), the

GID of the group, and the primary and supplementary members

of the group (as links to those member’s detailed user views).

The process listing shows every process running on the

system (as per ramparser memory analysis), giving the name,

the PID of the process, the user running the process, and

a count of open files, open TCP/IP sockets, and memory map-

pings. The detailed process view also allows the investigator

to view the code segment, data segment, stack or heap of

the process in a hex dump like format or as raw bytes, suitable

for saving to a file for further analysis. This detailed view also

shows opened files and their file descriptor ids. If the open file

is a real file, it is displayed as a link to the filesystem view of

that file. If it is a TCP/IP socket, it is a link to the display

page of that socket. The next piece of displayed data is a listing

of all TCP/IP sockets for this process. Each entry gives the

inode of the socket, the source IP:port and destination IP:port

pair, and a count of the number of entries in the send and

receive buffers. Clicking on the inode number will present

the user with a detailed view of that socket. Finally, the

detailed process view shows memory mappings for the pro-

cess. Mappings of actual files, opened by mmap, or as a shared

library, will be displayed as links to the filesystem view of

those files. In addition, hexadecimal or raw displays of code

and data segments for libraries or data for regular files are

available. Similarly, anonymous areas of mapped memory

are identified as such and can be viewed.

The filesystem view allows the investigator to browse

a filesystem associated with the investigation. Each entry in

the filesystem view is addressed by the URI/files/<path to

file>, with /files/ representing the root directory. An entry in
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the filesystem view is treated as either a directory, or a regular

file. In either case, the entry will display the owner’s username

and group (with appropriate links), the permissions flags, the

size, the modification, access and change (MAC) times, as well

as a listing of all processes which currently have the file

opened or mapped. If the file is a directory, the entry will

also list all directory entries as links to their specific filesystem

pages. If the file is anything other than a directory, the name of

the file will be displayed as a link to the actual file as it exists

on the filesystem. The investigator may use this link to save

a copy of the file for further analysis.

The main packet view simply lists all packets found in the

pcap network trace. The packets are assigned a unique id, and

displayed as links to the individual packet’s detailed view. The

detailed view of a single packet lists the source IP and port, the

destination IP and port, the time at which the packet was

captured, and allows the investigator to view the packet in

both hexadecimal view and as raw bytes.

Clicking on a socket’s inode will present the investigator

with a detailed view of that socket. This view gives the bound

port and IP (if any), the connected peer’s IP and port (if any),

and will give a listing of all incoming and outgoing packets

associated with this socket. The investigator may view

packets individually, or they may view the entire stream in

hex or as raw bytes.

5. An experiment: FACE in a typical
investigative scenario

5.1. Overview

It is not uncommon in corporate environments for malicious

users or for malware to transfer sensitive documents outside

of a company’s perimeter. Using current forensic tools, the

methods to determine who transferred a file and when rely

on network traces or disk images that contain parts of the

file or substantial fragments. This leaves significant doubt

about who really transferred the file and the file’s origin. Rely-

ing solely on network traffic is inefficient because MAC

addresses can easily be cloned or modified. Similarly, simply

finding a sensitive file on an employee’s hard drive does not

prove that the file was transferred from that machine.

We developed an experiment to test our system’s ability to

correlate data from multiple sources, to provide a clear inves-

tigative picture, and to give more detailed information about

the actions taken by a user. Our experiment involved transfer-

ring a large file over FTP while taking a memory dump and

recording network traffic. By combining memory, disk, and

network information, we hoped to map the data in the

network stream back to the user who created the process on

the originating machine.

Our scenerio involves Ryan Acer, a network administrator

for a small company who is suspected of selling trade secrets

to a competitor. An outside investigative agency was secretly

hired to determine if any trade secrets were being transferred

outside of the company network, and if so, by whom. The

investigators recorded all network traffic for a day and when

they noticed an unusual spike in outbound traffic, they initi-

ated a memory dump of Ryan Acer’s workstation. Later that

day, they retrieved a copy of the Ryan’s Linux partition using

dd, and used these three sources of data as input to FACE.

5.2. Experimental setup

Two Debian 40r3-i386 VMWare images were used, one as

a user workstation and the other as the server. The services

of interest to us were the Apache 2.2.3 HTTP server and the

vsFTPd 2.0.5 FTP daemon. We transferred a large file over

FTP from the client machine to the FTP server while simulta-

neously downloading content from the web server. This

mimics the activity of a user who is casually browsing the

Internet while uploading sensitive documents to an outside

location. The sensitive document for the experiment is named

’file2’ and contains content that is easily recognizable as

proprietary. For the experiment, after the first HTTP download

is complete, the client VMWare image was suspended.

Performing the experiment in this manner allowed us to

have a large amount of data in both the network trace and

in the FTP processes’ network packet queues. This also sus-

pends the process while the FTP file connection was still

open, which allows us to look at the list of open files and

match data on disk with pieces of data in the socket queues

and in the network stream. Running Xorg and other non-

essential graphical applications while downloading the file

made the experiment more realistic and produced many

more processes for our tools to analyze. Wireshark recorded

all traffic up to the time of the memory dump and its output

was saved to a pcap file. The client filesystem was copied

using dd and netcat. Together this data represents the com-

plete state of the machine at the time and its network traffic.

After the scenario was enacted, we ran ramparser and our

pre-processing scripts on the Debian memory image, the

pcap network trace and the dd image of the filesystem and

then the web interface/correlation engine was started. The

first step of the investigation is to discover what happened.

In this scenario, the owners of the corporation believe the

suspect was transferring proprietary files to an outside entity,

so the first step is to look at what the user was doing. To do

this, the investigator retrieves the process list using FACE.

Eight processes have open network connections. Six of these

are system processes and daemons, which leaves two user-

land processes as initial targets of investigation. The first

process to be investigated is the Firefox web browser. Clicking

on Firefox’s entry shows that there is only one open network

connection, so the investigator would look at that more

closely. Upon viewing that connection’s details, the investiga-

tor sees that there is relatively little network traffic, so he can

quickly view the streams to see that no proprietary informa-

tion was being uploaded through Firefox. Further, none of

the open files appeared to be proprietary data.

After noting that the user was not likely uploading propri-

etary data via Firefox, the investigator turns to the next

likely culprit, the FTP process. Viewing this process shows

two active network connections and one of them has a large

amount of associated traffic and a significant amount of data

left in the send queue (see Fig. 5 for a screen shot; space

limitations prevent screen shots of the other information).

Further, the investigator notes that FTP has as one of its

open files /root/file2, the proprietary file mentioned in the
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scenario setup. The investigator first views the FTP com-

mand stream, and locates the command to upload file2

(STOR file2) in the outgoing network stream. The investigator

then views the contents of the data stream seeing that the

proprietary information is in fact being transferred over the

network as file2. Finally, the investigator clicks on the entry

for open file /root/file2, and verifies the access time and the

contents of the file, that it is indeed the proprietary file that

he should not have uploaded.

Now that the investigator knows which process was used

to upload the file, he can attempt to figure out when the file

was uploaded. This can be done by simply noting the times

associated with the first and last packet in the FTP data

connection which was used to upload the file (2008-3-

12T10:10:47 and 2008-3-12T10:11:0), and can then note that

this time is about the same as the last access time of the file

/root/file2 (2008-3-12T10:11:0). The final question that the

investigator needs to answer is whether or not the suspect

was the one who uploaded the file. The FTP process was run

as the root user, whose last login was 2008-3-12T9:34:57, about

35 min before the file was transferred. The login was noted to

be local, so the user had to have physical access to the ma-

chine; this rules out an outside attacker. The only other clue

we have to the perpetrator’s actual identity is the username

and password pair used in the FTP process: racerx/racerx123.

Because the suspect’s name is Ryan Acer, this is indicative but

not conclusive evidence that he may have been the culprit.

6. Conclusion

This paper makes two main contributions – we presented

a new tool for Linux memory forensics, called ramparser, and

an integrated forensic framework called FACE. While not the

first tool of its kind, ramparser is the most advanced to date

and provides several key features many of which have not

been available on Linux up to this point:

� Process functions: identification of running processes, loaded

modules, processes’ code, stack, head, code, and data

segments.

Fig. 5 – FTP process information.
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� File functions: identification of open files, shared libraries,

shared memory, anonymously mapped memory.

� Network functions: identification of open sockets, protocol

information, as well as send and receive queues.

In standalone mode, most functions are accessed via a fa-

miliar interface – a simulation of standard Linux commands

used on live systems, such as ps, lsmod, and netstat. The

presented digital forensic framework called FACE (Forensics

Automated Correlation Engine) advances the state-of-the-art

by demonstrating fully automatic correlation of disparate ev-

idence sources. This is an effort to help the investigator by fol-

lowing an integrative approach to forensics which links

together the different objects and events of interest and pres-

ents a higher-level view of the forensic target as a whole. This

approach significantly improves the investigative process in

at least two ways:

� Automatically performs routine correlation tasks. We demon-

strated the automatic correlation of forensic data from

a filesystem, Linux memory image, and network capture.

This saves significant amounts of manual work and helps

manage the growth in complexity of investigative targets.

� Presents a logical view of the entire target computer system. The

logical, hyperlinked view presented by the system provides

an intuitive means to explore relevant data and to ignore

noise. Further, this system-level view provides investigators

with the appropriate level of abstraction and allows them to

focus on real detective work as opposed to understanding

a multitude of separate tools. This also facilitates the gener-

ation of a final report and, ultimately, the presentation of

evidence.

7. Future work

We view the presented work as a first step towards a larger

contribution to the digital forensic community. The overall

goal is to create a platform that both provides new capabilities

(such as deep Linux memory dump analysis) and incorporates

existing tools. We view three major directions in which to

expand our work:

� Improved correlation. We will seek to generalize and

expand our correlation capabilities by leveraging existing

methods, including statistical ones. We recognize that it

is often impossible to give a precise answer so some

queries, however, we are also convinced that we can

apply sound scientific methods to help solve difficult

forensic problems.

� Improved visualization. We plan to leverage decades of visual-

ization research to help us build better visual aids for the

investigator. It is our belief that the importance of forensic

data visualization will increase in lockstep with the continu-

ing surge of forensic data.

� Improved interoperation. We will provide standard means of

data exchange and an API, which will allow others to build

better tools, and will allow their transparent incorporation

into FACE. This will also help utilize the multitude of tools

that can provide parsing of various data sources.
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