
ava i lab le at www.sc ienced i rec t . com

journa l homepage : www. e lsev ier . com/ loca te / d i in

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 1 0 5 – S 1 1 3
Multi-resolution similarity hashing

Vassil Roussev*, Golden G. Richard III, Lodovico Marziale

Department of Computer Science, University of New Orleans, New Orleans, LA 70148, United States

Keywords:

Hashing

Similarity hashing

Digital forensics

Multi-resolution hash

File correlation

Data correlation

a b s t r a c t

Large-scale digital forensic investigations present at least two fundamental challenges.

The first one is accommodating the computational needs of a large amount of data to be

processed. The second one is extracting useful information from the raw data in an auto-

mated fashion. Both of these problems could result in long processing times that can seri-

ously hamper an investigation.

In this paper, we discuss a new approach to one of the basic operations that is invariably

applied to raw data – hashing. The essential idea is to produce an efficient and scalable

hashing scheme that can be used to supplement the traditional cryptographic hashing dur-

ing the initial pass over the raw evidence. The goal is to retain enough information to allow

binary data to be queried for similarity at various levels of granularity without any further

pre-processing/indexing.

The specific solution we propose, called a multi-resolution similarity hash (or MRS hash), is

a generalization of recent work in the area. Its main advantages are robust performance –

raw speed comparable to a high-grade block-level crypto hash, scalability – ability to com-

pare targets that vary in size by orders of magnitude, and space efficiency – typically below

0.5% of the size of the target.

ª 2007 DFRWS. Published by Elsevier Ltd. All rights reserved.
1. Introduction

One of the main performance bottlenecks of (digital) forensic

processing, especially in large cases, is the disk I/O time. For

example, for a commodity Seagate 750 GB Barracuda ES

SATA hard drive it would take approximately 2:40 h to read

the entire drive at the advertised sustained (sequential) transfer

rate of 78 Mbits/s. (It is worth noting that manufacturers like to

draw attention to the bandwidth of the buffer-to-host connec-

tion, which is up to 3 GB/s but, for large reads, it is the disk-to-

buffer rate that is the limiting factor.) In other words, creating

a working copy of the original target would take at least that

much time. At the end of the operation, virtually nothing of

forensic interest will be known about the target. Thus, at least

one more pass will be performed by the investigator’s forensic

tool of choice before any real work can begin rounding out
a full workday with no real work accomplished. Unfortunately,

reality is much worse – the forensic pre-processing of a target

of this size is likely to take several days using current tools.

Part of the problem lies not with the tools per se but with the

file-centric processing, which generates a much more ran-

domized I/O workload than a straight sequential read.

The primary goal of this work is to develop a scheme that,

eventually, allows for digest information to be extracted from

the target while it is being copied. Unlike traditional hashes,

which can only answer yes/no comparison questions, we

would like to provide a measure of similarity among raw data

objects. This in turn can be used to find versions of the same

object, find related objects, or to automatically classify related

information.

The exact same mechanism can also be applied to compare

files of various types, as our experiments show. We should
* Corresponding author.
E-mail addresses: vassil@cs.uno.edu (V. Roussev), golden@cs.uno.edu (G.G. Richard III), lmarzial@cs.uno.edu (L. Marziale).

1742-2876/$ – see front matter ª 2007 DFRWS. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2007.06.011

mailto:vassil@cs.uno.edu
mailto:golden@cs.uno.edu
mailto:lmarzial@cs.uno.edu
http://www.elsevier.com/locate/diin

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 1 0 5 – S 1 1 3S106
emphasize that this kind of work is designed to supplement,

not replace type-specific processing. It is useful to think of

this mechanism as being one of first and/or last resort. In

other words, it can be used like traditional hashes in the be-

ginning as a quick way to narrow down the scope of the inves-

tigation, but it can also be applied to binary data for which no

type-specific tools are available (e.g. raw data dumps).

2. Related work

Over the last two decades, there has been a significant amount

of work in the area of information retrieval (IR) that deals with

approximate string matching. Yet, from a forensic perspec-

tive, there are a host of challenges that have not been

addressed as they are not a concern in the IR field. Those

tend to fall in two categories: execution time and target do-

main. Generally, IR systems have all the time in the world to

perform any pre-processing they need and the solutions are

targeted at specific domains, most often text. In the case of

web search engines, there is also explicit information that

links objects together. In forensics, there is the distinct need

to have generic tools that work fast and help sift through tera-

bytes of raw data. Naturally, we cannot expect such tools to

have the fidelity of domain-specific solutions but should be ef-

fective in finding binary similarity among digital artifacts.

Much of the IR work has focused on web data and with the

goal of either finding near-identical document, or to identify-

ing content overlap. Brin et al. (1995) pioneered the use of word

sequences to detect copyright violations. Follow-up work by

Shivakumar and Garcia-Molina has focused on improving

and scaling up the approach (Shivakumar and Garcia-Molina,

1995, 1996, 1998).

Currently, the state-of-the-art is represented by Broder

et al. (1997) and Charikar (2002) and all other techniques use

them as benchmarks and/or starting point for further devel-

opment. Broder uses a sample of representative ‘‘shingles’’

consisting of 10-word sequences as a proxy for the document,

whereas Charikar constructs locality sensitive hash functions

to use in similarity estimation. A detailed explanation of these

(and related) algorithms is beyond the scope of this paper.

However, it is worth noting that almost invariably, the ap-

proaches are optimized for text documents. Evaluation/com-

parison studies (e.g. Monostori et al., 2002) of these and

other methods have focused primarily on accuracy and recall

measurements and, to some degree, the number of docu-

ments compared. We could not find any execution time num-

bers although we conjecture that the author of Henziger (2006)

was in fact able to get reasonable performance by using Goo-

gle’s massively parallel infrastructure (Dean and Ghemawat,

2004).

Overall, we have argued (Roussev and Richard, 2004) that

the use of distributed processing is necessary if these and

other advanced techniques are to be utilized in routine foren-

sic analysis. Indeed, the economics of such use have improved

ever since down to the point where the rent for 1 CPU for an

hour has reached $0.10 (http://amazon.com/ec2). Yet, band-

width limitations (uploading a target) are an obstacle. Thus,

realistic forensic use is largely limited to a single computer

system and that is the focus of this work.
Currently, we are only aware of only two forensic similarity

hashing schemes – Kornblum (2006) and Roussev et al. (2006) –

that have been recently proposed at DFRWS 2006. As our fur-

ther analysis will show, they contain complimentary ideas

and serve as a starting point for this work.

2.1. Block-based hashing

The most basic scheme that can be used for determining sim-

ilarity of binary data is block-based hashing. In short, crypto

hashes are generated and stored for every block of a chosen

fixed size (e.g. 512 bytes). Later, the block-level hashes from

two different sources can be compared and, by counting the

number of blocks in common, a measure of similarity can be

determined. The main advantage of this scheme is that it is al-

ready supported by existing hashing tools and it is computa-

tionally efficient – the hash computation is faster than

disk I/O.

The disadvantages become fairly obvious when block-level

hashing is applied to files. Success heavily depends on the

physical layout of the files being very similar. For example if

we search for versions of a given text document, a simple

character insertion/deletion towards the beginning of the file

could render all block hashes different. Similarly, block-based

hashes will not tell us if an object, such as JPEG image, is em-

bedded in a compound document, such as MS Word docu-

ment. In short, the scheme is too fragile and a negative

result does not reveal any information.

2.2. Context-triggered piecewise (CTP) hashing

Kornblum (2006) proposed an approach that overcomes some

of the limitations of block-based hashes and presents an

implementation called ssdeep. The basic idea is to identify

content markers, called contexts, within a (binary data) object

and to store the sequence of hashes for each of the pieces

(or chunks) in between contexts (Fig. 1). In other words, the

boundaries of the chunk hashes are not determined by an

arbitrary fixed block size but are based on the content of the

object. The hash of the object is simply a concatenation of

the individual chunk hashes. Thus, if a new version of the

object is created by localized insertions and deletions, some

of the original chunk hashes will be modified, reordered, or

deleted but enough will remain in the new composite hash

to identify the similarity.

To identify a context, ssdeep uses a rolling hash over a win-

dow of 7 bytes, which slides over the target. If the lowest k bits

c1 c2 c3 … cn-2 cn-1 cn

chunks

Hash = h(c1)h(c2) …h(cn)

context

Fig. 1 – Context-based hashing.

http://amazon.com/ec2

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 1 0 5 – S 1 1 3 S107
of the hash (the trigger) are all equal to one, a context is

detected, the hash computation of the preceding chunk is

completed, and a new chunk hash is started. (This approach

can be traced back to Brin et al., 1995.) The exact value of k de-

pends on the size of the target as the tool generates a fixed-

size result. Intuitively, a bigger k produces less frequent con-

text matches.

It is difficult to formally analyze and to prove that this con-

text-based approach to hashing yields reliable results. How-

ever, experimental results show that, for realistic targets,

the basic idea is sound and works well. In Section 3, we pro-

vide a more detailed analysis of the specific design and imple-

mentation choices made in ssdeep. At this point we will note

that, while Kornblum’s work certainly deserves the credit for

bringing the idea to forensics, context-based hashing is also

a starting point for a number of possible implementations

each with their own advantages and shortcomings.

2.3. Bloom filter hashing

Traditionally, Bloom filters (Bloom, 1970) have been used for

space-efficient set representation. The price for efficiency is

the probability that membership queries may return false pos-

itive (but not false negative) result. Crucially, the relationship

is mathematically quantifiable and, for collision-resistant

functions (e.g. MD5), empirical observations closely match

the theoretical framework (which depends on the hash func-

tions being perfect).

The original Rabin–Karp string-searching algorithm Karp

and Rabin (1987) uses Bloom filters to speed up the search

for multiple string matches. It can be viewed as a precursor

to the presented forensic use of Bloom filters, with the notable

difference that it utilizes them as a helper mechanism, not as

proxies for the search of the original data.

Before we present the proposed forensic use of Bloom fil-

ters, we provide a brief overview of (Bloom) filters in general

with some of the most relevant results. Our discussion and

notation follow the framework presented in Broder and

Mitzenmacher (2005) and Mitzenmacher (2002) and have abso-

lutely no claim to being exhaustive.

In short, a filter B is a representation of a set S¼ {s1, ., sn} of

n elements from a universe (of possible values) U. The filter

consists of an array of m bits, initially all set to 0. The ratio

r¼m/n is a key design element and is usually fixed for a partic-

ular application. To represent the set elements, the filter uses

k independent hash functions h1, ., hk, with a range {0, .,

m� 1}. All hash functions are assumed to be independent

and to map elements from U uniformly over the range of the

function.

To insert an element s from S, the hash values h1(s), ., hk(s)

are computed and the corresponding k bit locations are set to

1. The same process is repeated for every element in S. Note

that setting a bit to 1 multiple times has the same effect as do-

ing it once. Fig. 2 sketches the insertion of two consecutive el-

ements – s1 and s2 – into an empty Bloom filter.

To verify if an element x is in S, we compute h1(x), ., hk(x)

and check whether all of those bits are set to 1. If the answer is

no, then we know that x is not an element of S, i.e., there are no

false negatives. Otherwise we assume that x is a member,

although there is a distinct possibility that we are wrong and
the bits we checked were set by chance. Namely, it can be

shown that the probability for a false positive is given by:

PFP ¼

1�
�

1� 1
m

�kn
!k

z
�
1� e�kn=m

�k¼ ð1� pÞk;

where p is the probability that a specific bit is still 0, after all

the elements of S are hashed:

p ¼
�

1� 1
m

�kn

ze�kn=m:

It is clear that the false positive rate depends on three factors:

the size of the filter m, the number of elements n, and the

number of hash functions k, and that those can be traded

off. This optimization is not linear: increasing the number of

hash functions increases the chance of finding a 0 bit for

a non-element; however, reducing the number of hash func-

tions increases the fraction of 0 bits in the filter. To illustrate

this, Table 1 gives some example false positive rates for

m¼ 256 and various k, and n.

An interesting property of Bloom filters is that although we

cannot predict which bits will be set after n insertions, we can

predict with great confidence how many of the bits will be set

to 0 (or 1). Specifically, it can be shown (e.g. Brin et al., 1995)

that the expected number of zero bits in the filter is strongly

concentrated around its expectation m(1� 1/m)kjSj.

A similar result holds for the intersection of two filters (of

the same size and hash functions). In other words, given

two filters representing disjoint sets, we can rather confi-

dently predict how many bits will match by chance. If the

actual observation is outside a relatively narrow interval, we

S1

S2

h1(S1)

h1(S2) h2(S2) h3(S2)

h2(S1) h3(S1) hk(S1)

hk(S2)

h2h1 h3 ... hk

0 0 0 00 0 0 0 00 0 0 0 0 0 0 0 0 0 0…………………0 0

m (= 2l)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0……………………0 0 0 0

1 1 11

00 0 0 0 0 0 0 00 0 0 0 0 00 00 0 0……………0 001 1 11 1 11

Fig. 2 – Insertion of elements into a Bloom filter.

Table 1 – Example false positive rates for m [256

m¼ 256 k

2 4 6 8 12 16

m/n 16 0.0139 0.0024 0.0009 0.0006 0.0005 0.0007

14 0.0178 0.0038 0.0018 0.0013 0.0013 0.0022

12 0.0237 0.0065 0.0037 0.0032 0.0041 0.0076

10 0.0330 0.0119 0.0085 0.0085 0.0137 0.0274

8 0.0491 0.0241 0.0217 0.0257 0.0488 0.0986

4 0.1553 0.1604 0.2209 0.3140 0.5438 0.7457

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 1 0 5 – S 1 1 3S108
can conclude that it is statistically unlikely for that to happen

by chance. Therefore, it is reasonable to assume that the two

original sets had a certain degree of overlap.

The above observation is the basis for the work described

in Roussev et al. (2006), which presents a tool (md5bloom)

which allows general-purpose filter manipulation, as well as

the described direct filter comparison with associated statisti-

cal interpretation. Thus, the filter becomes an aggregate hash

function that enables efficient similarity comparison. In the

specific uses presented by the authors the individual hashed

components are derived from objects with well-known struc-

ture, such as a code library or a directory of files. For example,

by using individual functions within a code library as the unit

of hashing, the authors were able to easily identify versions

with only 35% overlap despite the fact that the filters used

had a high false positive rate of about 0.15 at 4.75 bits per ele-

ment and four hash functions. The main shortcoming of the

md5bloom tool is that, although it can work well for objects

with known structure, it does not address the issue of deter-

mining suitable decomposition for an arbitrary object.

3. Design analysis

In this section, we present a generalized view of the context-

based hashing approach presented in Section 2.2 and explore

the design space.

Designing a context-based hashing scheme can be broken

into several steps, each of which has more than one possible

choice. The first step is determining the context, which brings

up two questions:

What is a suitable length for the context?

What is a suitable context hash function?

ssdeep adopts most of its choices based on earlier work on

spam filtering after which it is modeled Tridgell (2002). Specif-

ically, it picks 7 as the length of the window over which the

context function is evaluated and uses a version of the Adler32

checksum for the rolling hash function.

Are these good choices and how do we determine that?

Intuitively, a good hash function will produce relatively

evenly sized chunks. The length of the context determines

the number of evaluations of the context hash function – if

the context has a length of c, this is equivalent to calculating

the hash of the entire object c times. At the same time,

a shorter context should produce shorter chunks, which

would lengthen the composite hash.

First, let us try to determine the significance of the choice

of hash function. Generally, there are two kinds of hash func-

tions in common use today – polynomial (such as Adler32) and

cryptographic (MD5 and the likes). The former is optimized for

speed whereas the latter for collision-resistance. For our ex-

periments, we picked MD5 and compared its performance to

that of a simple polynomial hash usually referred to as djb2

and defined as follows:

h0 ¼ 5381; hk ¼ 33hk þ sk; for k > 0:

where sk denotes the kth character of the string being hashed.
We used a corpus of documents of various types obtained

at random from a search engine (10 per topic). The documents

were then manually opened to verify their validity. All dupli-

cates were removed as were all documents less than 64 kB

in size. We also used files containing pseudo-random num-

bers for reference.

First, we consider the choice of hash function over random

input, in particular, we examine the length of the chunks.

Table 2 presents a representative sample of the results for

the MD5 and djb2 functions with a trigger value t¼ 8 and var-

ious lengths for context.

It is not difficult to observe that the behavior of the two

functions is quite similar and that using a collision-resistant

function is unnecessary in this case. This result is to be

expected as the input provides all the randomness. The above

results are quite close to our observations for some high-

entropy data types, such as JPEG and PDF.

Let us now consider the case of other types of documents

with lower entropy, such as MS Word documents. As Table 3

suggests, there are some differences in performance, how-

ever, those remain relatively small with the notable exception

of extreme behavior, such as exceptionally long chunks.

Therefore, sticking with the computationally affordable djb2

function appears to be a reasonable choice.

Recall that, based on a trigger value of 8, our expectations

are that a context would be discovered every 28¼ 256 bytes,

on average. Therefore, the logical choice of context should

be in the 7–8 range. We chose 7 as it shows less extreme be-

havior but also set a minimum chunk size equal to a quarter

of the expected one, or 64 bytes. Thus, we expect a mean of

234 bytes for the chunk size for the tested doc files.

Next up is the choice of hash function for the chunk

hashes. ssdeep uses the least significant 6 bits from a 32-bit

FNV hash and this is referred to as LSB6 hash. FNV is not a col-

lision-resistant function and has some known collision issues,

which are common among multiplicative functions. There-

fore, the probabilistic rationale presented in the paper, which

assumes a perfect hash, should be taken with a grain of salt.

Generally, given that the performance benchmark is block-

level crypto hashing, using MD5 would seem an appropriate

choice, especially for inputs with lower entropy which would

present a serious problem for simple hashes.

Next, we need to decide on the composition and compari-

son semantics of the object hashes. In ssdeep, the composite

hash is a string sequence with each character representing

a chunk of the object. The comparison is done based on edit

distance with different string operations – insert, delete,

change, and swap – having different weights in the determi-

nation of the final score (1, 1, 3, and 5, respectively). This

Table 2 – Observed chunk sizes: random input, t [8

Context 5 6 7 8 9

Hash djb2 md5 djb2 md5 djb2 md5 djb2 md5 djb2 md5

Mean 39 39 71 71 135 135 263 262 519 521

Median 29 30 52 52 97 96 184 185 363 362

Max 334 400 791 740 1715 1345 3341 2948 7155 4950

Std dev 31 31 63 64 128 127 257 255 511 515

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 1 0 5 – S 1 1 3 S109
Table 3 – Observed chunk sizes: .doc input, t [8

Context 5 6 7 8 9

Hash djb2 md5 djb2 md5 djb2 md5 djb2 md5 djb2 md5

Mean 42 41 83 75 170 140 328 298 632 588

Median 30 29 53 49 93 81 173 154 329 290

Max 14,208 4102 14,208 11,608 65,536 29,901 486,950 360,555 504,890 361,128

Std dev 99 51 175 127 547 320 2201 1839 2609 2168
design is modeled on the algorithm used by the trn news-

reader Tridgell (2002) and does not appear to be based on the

specifics of the context-based hashing. Recall that contexts

will pick randomly sized chunks so the preference of swaps

and modifications over inserts and deletes does not have the

same significance as in text editing.

A bigger issue here is the fact the hash produced by ssdeep

is a sequence where order is considered significant. On the

other hand, md5bloom uses an approach where order informa-

tion is lost once the hashes are inserted into the filter.

Maintaining sequence information carries non-trivial compu-

tational and storage costs. To illustrate, consider a 256-byte

Bloom filter vs. a 256-byte LSB6 hash. The filter can accommo-

date 256 elements at 8 bits per element with four hash func-

tions (Table 1) and will have a false positive rate of 0.024.

The LSB6 hash will have at most 256/6¼ 42 elements (in real-

ity, 32 with byte alignment) with a false positive rate of

1/64¼ 0.015. Further, the filter would be compared against

another filter, which will improve its performance as shown

in Roussev et al. (2006) and in other applications, such as hier-

archical Bloom filters Shanmugasundaram et al. (2004). No

such effect will be present in the LSB6 case. From a perfor-

mance perspective, computing edit distance requires dynamic

programming (quadratic complexity) whereas comparing

filters is a straightforward linear scan with bitwise AND oper-

ations and table lookups.

The next step in the design process is to determine

whether the composite hash will be of fixed or variable size.

Fixed-size hashes have an obvious appeal – minimum storage

requirements and simple management. However, they also

have some scalability issues as they limit the ability of the

hashing scheme to compare files of varying sizes.

This is illustrated by ssdeep, which sticks to a fixed-size

final hash. Thus, the width of the trigger k in bits depends

on the size of the file. So, if a file f1 is at least twice as big as

f2 (jf1j> 2jf2j) then k1> k2, which renders the hashes produced

for the two file incomparable since they are effectively taken

at different granularities. To somewhat alleviate the problem,

ssdeep produces two hashes with trigger widths of k and kþ 1.

This postpones the day of reckoning but if jf1j> 4jf2j, hashes

are again incompatible. Examples where this would be a seri-

ous limitation is looking for a file in an (uncompressed) ar-

chive or a disk image.

md5bloom has a very similar problem if we attempt to pro-

duce a composite hash which consists of a single filter. Recall

that, in order to compare two filters, they must be of the same

size and use the same hash functions. While it is possible

shrink a filter in half at the expense of doubling the density,

this trick is only practical if applied once or twice, otherwise
it would either produce filters with too low bit per element

count, or would require that filters be created very sparse,

initially.

Fixed-size composite hashes produce another problem –

they may force the reevaluation of the hash over the entire

object if it turns out to be too short or too long. For example,

running ssdeep on hundreds of files of different file types,

reveals that the problem does not exist in high-entropy

(compressed/encrypted) formats, such as JPEG, or PDF but for

text/html files the hash is computed 1.3 times per file, on

average, and almost two times for MS Word and Excel docu-

ments. Bloom filters have more flexibility and could be budg-

eted ahead of time for a certain level of variation but, in

general, are not immune to the problem. Finally, fixed-size

hashes have an obvious problem in dealing with stream

data where object size is not known ahead of time and recal-

culation is not an option.

This analysis points to the need to devise a variable-sized

hashing scheme that scales with the object size but also main-

tains a low relative overhead. One generic rule of thumb could

be that, ideally, we should be able to compare the hashes of

two large drives (500 GB) worth of data in main memory. On

a modern machine with 2–4 GB of RAM, this points to an ac-

ceptable overhead in the 0.2–0.4% range.

Finally, we need to strike a proper balance between flexibil-

ity and standardization. By flexibility here we mean both the

ability of the tool to adapt to the target and the option of allow-

ing the investigator to fine-tune the tool to a specific need. At

the same time, the hashes produced must adhere to some

standardized scheme to ensure that hashes produced inde-

pendently are guaranteed to be comparable and to yield

a meaningful result. Existing cryptographic hashing tools fit

that description, whereas newer tools like ssdeep and

md5bloom do not.

4. MRS hashes

A multi-resolution similarity hash is, essentially, a collection

of similarity hashes so we first focus on the basic construction

of a variable-length similarity hash.

4.1. Flat similarity hash

Based on the analysis in the previous section and a lot of ex-

perimentation, we made the following design choices.

Context hash function: djb2. Since simple hashes work as well

as crypto hashes in this case, we picked the simplest hash that

is reputed to work well.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 1 0 5 – S 1 1 3S110
Context length: 7. While our tool retains the flexibility to use

context of any length, standardization here is important as

most users will have no basis for choosing a suitable number.

Chunk hash function: MD5. The reasoning here is twofold:

chunks could be relatively long so having a collision-resistant

function is worth the extra processing; also, it works well with

our choice for hash composition, which is based on Bloom

filters.

Hash composition: a set of Bloom filters. To enable universal

comparison of filters we standardized them to be 256 bytes,

8 bits per element, and we use four hash functions. To obtain

the four hashes, we take the MD5 chunk hash and split it into

four 32-bit numbers and take the least significant 11 bits from

each part.

The combined hash is generated as follows:

A 32-bit djb2 hash is computed on a sliding window of size

7. At each step, the least significant t bits of the hash (the

trigger) are examined, and if they are all set to 1, a context

discovery is declared; t is the essential parameter that dis-

tinguishes the different levels of resolution, as explained

later in the section. For the lowest level 0, the default value

is 8.

Context discovery triggers the computation of the MD5

chunk hash between the previous context and the current

one. (The beginning/end of an object is considered a con-

text, mostly for convenience.)

The chunk hash is split into four pieces and four corre-

sponding 11-bit hashes are obtained and inserted into

the current Bloom filter.

If the number of elements in the current filter reaches the

maximum allowed (256), a new filter is added at the end of

the list and becomes the current one.

The hash consists of the concatenation of all the Bloom fil-

ters, preceded by their total count.

Comparison semantics: set-based (no ordering). Intuitively, our

comparison semantics can be described as follows: given two

files: A and B, where jAj< jBj and their corresponding similar-

ity hashes h¼ h1, h2, ., hn and g¼ g1, g2, ., gm, how many

among the filters h1, h2, ., hn of A have a similar filter among

g1, g2, ., gm?

More formally, let z(f1, f2) be the similarity score of filters f1

and f2 (0� z� 1), and

z1 ¼max
�

z
�
h1; g1

�
; z
�
h1; g2

�
;.; z

�
h1; gm

��
;

z2 ¼max
�

z
�
h2; g1

�
; z
�
h2; g2

�
;.; z

�
h2; gm

��
;

/
zn ¼max

�
z
�
hn; g1

�
; z
�
hn; g2

�
;.; z

�
hn; gm

��
;

then z(h, g) h (z1þ z2þ/þ zn)/n.

We refer to the similarity between two filters as a Z-score,

since it is derived from counting the number of zero bits in

the filters and their inner product. It can be shown (e.g. Brin

et al., 1995, Section 2.5) that the magnitude of the intersection

of the original sets from which the filters are derived is propor-

tional to the logarithm of Z¼ (Z1þ Z2� Z12)/(Z1Z2), where Z1 is

the number of zero bits in the first filter, Z2 – in the second fil-

ter, and Z12 in their inner product (bitwise AND).

The expected minimum is reached for Z1¼ Z2 and Z12¼ 0

(no common elements) so Zmin¼ 1/Z2¼ 1/2048, for our specific

case of 256 bytes.
Similarly, maximum is achieved whenever the two filters

are identical so Z1¼ Z2¼ Z12 / Zmax¼ 1/Z1. Thus, we can

map the interval [log(1/2048), log(1/Z1)] interval to [0, 1] to

obtain a score. Interpretation of the score is discussed in

Section 5.

4.2. Multi-resolution similarity hash

Let us now consider the expected behavior of the similarity

hash. Generally, we would hope that the trigger value t can

predict the average size of a chunk. In an ideal world, where

data is uniformly random and the context hash function is

perfect, we would expect that chunk sizes would average 2k.

Indeed, empirical tests show that, over a long random file

the average chunk size does indeed tend to stay close to our

expectations for the djb2 function. The only caveat is that

the observed standard deviation is fairly large – close to the

value of the average itself. While it is difficult to make sweep-

ing generalizations, we have found that, for our corpus of files,

the actual average can vary within a factor of two (on either

side) for things like Word & Excel documents, and gets closer

to our expectations for compressed formats, such as PDF and

JPEG. We should emphasize that our scheme does not depend

on things being distributed in any particular way, however, for

very sparse data the results may not be very helpful – indeed, it

would be difficult to define any meaningful notion of similar-

ity for such data.

Returning to our specific choices of parameters, we would

expect that a single filter of 256 elements and a trigger t¼ 8

to cover approximately 256� 28¼ 65,536 bytes, or 64K. We

have also observed that, with the exception of high-entropy

data objects, most other objects tend to produce a large num-

ber of very small chunks (in the order of the context length).

For the most part, this is due to the presence of blocks of zeros,

or ones. From the point of view of comparison, that is not

a problem as those will be effectively collapsed as they are

mapped to the same bits in the Bloom filter. However, for per-

formance reasons, we would like to avoid the computation of

an MD5 hash on just a few bytes. Hence, we introduced a min-

imum chunk size, which is currently set to 1⁄4 of the expected

average chunk size, or 2k�2. Thus, whenever a context is dis-

covered, the next 2k�2 bytes are skipped as far as context

hashing is concerned so the chunk is guaranteed a minimum

size. Arguably, some small details may be lost, however, we

have not observed any noticeable changes in effectiveness.

The overall design, as well as the chosen parameters

implicitly set a lower threshold on the size of the objects for

which the similarity hashing will be effective. Our goal was

to support objects of 32K and higher, and our tests have shown

that this scheme works well at the lower end. Although it is

possible to increase the granularity by lowering t, we quickly

reach the point of diminishing returns. Generally speaking,

small files (under 32K) would likely be better served by string

matching algorithms at a computational cost that should be

similar to (if not lower then) our hashing scheme.

So far, the similarity hashing allows two objects of arbi-

trary sizes (subject to the 32K minimum) to be compared.

For example, a 64K file could be compared to a 64 MB image

of a flash card (or a 64 GB hard drive) to determine if remnants

of it are still present. In the former case, we would expect to go

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 1 0 5 – S 1 1 3 S111
through about 1024 filter comparisons, or 256 kB of trivial bit

operations, which would be instantaneous on a modern ma-

chine. However, if we tried to compare two 64 MB images

(256 MB of comparisons), the computation would not be so

trivial, and with two 64 GB images (1 TB), it would be

infeasible.

Fortunately, we can trade a lower granularity of the hash-

ing for improved performance by simply varying the t param-

eter. For example, if we set t to 12, we would expect average

chunk size around 212 bytes and, therefore a single filter would

cover 256� 212¼ 220 bytes¼ 1 MB. Thus, comparing two 64 MB

files at this granularity would need 64� 64 filter comparison,

or going over about 256 kB. Similarly, we could scale up t to

16, 20, 24, . to accommodate as a large a target as necessary.

So, what is the best value for t? The answer is that, unless

the sizes of all possible targets are within a relatively narrow

range, no single value of t will satisfy all our needs. Therefore,

we generalize our similarity hashing to include multiple levels

(or resolutions) of similarity hashing that vary according to the

trigger parameter t. Thus, for larger files we store several sim-

ilarity hashes for standardized value of t – currently, 8, 12, 16,

20, 24, 28, and 32. The latter is the upper limit for our context

hash function, however, each filter will cover a full 1 TB of

data.

By fixing the values of t ahead of time, as well as fixing the

rest of the parameters, we guarantee that independently gen-

erated hashes will always be comparable and will yield mean-

ingful results. Notice that the additional cost of maintaining

multiple hashes drops by a factor of 16 for each subsequent

level so storage overhead is not an issue.

5. Experimental results

We are finally ready to present some experiments with our

prototype tool, called mrshash, that validate our work. In its

current version, the tool takes four parameters: RAM alloca-

tion, comparison level, mode of comparison, and a list of files.

Memory is allocated in several large chunks (one for each

level) to minimize memory management overhead. There

are two comparison modes: one-to-many and all-pairs. In

the former, the first file in the list is compared to each one

of the rest, whereas in the latter mode, all possible file pairs

are considered.

The test data was obtained through a search engine by re-

trieving the top 10 documents on a random generic topic (e.g.

‘document’). We removed all duplicates, files below 64 kB, and

verified the validity of each one of the remaining files by open-

ing them. As explained below, this procedure allowed for

a great variety of files but also netted some truly similar doc-

uments that we hope to capture automatically.

5.1. Pair-wise file similarity

In the trivial case of comparing a file with itself, the result will

be bit-for-bit identical hashes provably yielding a Z-score of 1.

In our file-based experiments, we run two separate cases:

‘‘all-pairs’’, and ‘‘each vs. half-directory’’. In the former exper-

iment, we simply compare all possible (unordered) pairs. In

the latter case, we perform the following: in a directory
containing a set of test files, we place half of the files in an

uncompressed archive. Then, for each of the original files in

the directory we generate the similarity score between the

file and the archive. We expect the files that are in the archive

to yield distinctly higher scores than the ones that are not. Due

to the way the scaling of Z is performed, results close to zero

should be considered noise. We performed the experiment

for files of different types. We also varied the archive format

(tar, zip, cat), but this had no observable effect so all presented

results are based on the zip archive format.

doc (MS Word). The sample contained 355 files varying in

size from 64 kB to 10 MB for a total of 298 MB of data. The ref-

erence archive included a random sample of 178 files (150 MB)

and all similarity scores are computed for level 0.

For the all-pairs experiment, out of 62,835 pairs, only 57

yielded a score of 0.1 and above (<0.1%) and those were man-

ually inspected for similarities. Out of the 18 pairs with score

of 0.2 and above, there were two false positives (there was

no obvious similarity among the files involves). Out of the 29

pairs with score below 0.2, there was one true positive and

the rest were true negatives. In other words, if we were to

choose 0.2 as a threshold value for classifying the pairs, we

would end up with two false positives and one false negative.

The results for the second experiment are depicted in

Fig. 3, where the top line represents the Z-scores of the files

that are known to be in the archive (true positives, TPs),

whereas the lower line represents the scores of the ones

that are not part of the archive (true negatives, TNs).

Ideally, we would like to see no overlap in the above

graph. In our test, we have two TNs and three TPs with

score in the 0.1–0.13 range. Depending on how the cutoff

line is drawn, we would end up with two false positives or

three false negatives, respectively. If we pick a more conser-

vative 0.2 threshold, we end up with no false positives and

four false negatives. Note that we have removed from the

data any TN files that have a similarity score with a TP file

of 0.2 and above.

To illustrate the kind of similarity we found, we discovered

that two of our doc files were also two versions of the XBRL 2.1

draft written four weeks apart (92 and 99 pages, respectively),

two other files were closely related versions of a manual (53

and 54 pages), and so on.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Z
-
s
c
o
r
e

True Positives True Negatives

Fig. 3 – Z-Scores for true positives/negatives (doc).

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 1 0 5 – S 1 1 3S112
xls (MS Excel). Our pool included 415 files, between 64 kB

and 7 MB, total size 257 MB. For the all-pairs experiment, out

of 85,905 pairs only 26 yielded a result of 0.1 and above and

those were manually inspected. Using a threshold value of

0.2 (as before) yields one false positive and one false negative.

As examples of true positives, we found different drafts of

the same environmental form, different work order of the

same format, and files with common spreadsheets.

As Fig. 4 demonstrates there is a clear separation between

true positives (above 0.17) and true negatives (below 0.12) for

the second experiment.

JPEG. We tested on 737 files between 64 kB and 5 MB for a to-

tal of 121 MB of data. For the all-pairs experiment, we observed

a total of 46 scores of 0.1 and above out of 273,370 pairs. We did

not expect to find any similarity as all of the images were dis-

tinct. However, we discovered four true pairs with scores of

0.214, 0.166, 0.136, and 0.121, respectively, all of them among

the top five Z-scores. In these cases, the images were distinct

but they had a common border frame with the website’s

logo/credits, which showed up in the similarity measure.

For the second experiment, we found a clear separation of

true positives and true negatives. As illustrated in Fig. 5, true

positives had a Z-score above 0.17, whereas true negatives

had scores below 0.1.

PDF (Adobe Acrobat). For technical reasons, our PDF sample

was relatively small (59 files) so the details are not included

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Z
-
s
c
o
r
e

True Positives True Negatives

Fig. 4 – Z-Scores for true positives/negatives (xls).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Z
-
s
c
o
r
e

True Positives True Negatives

Fig. 5 – Z-Scores for true positives/negatives (jpg).
here. In general, the files were picked to be different and the

actual separation between true positive and true negatives

for the second experiment was even clearer than the JPEG

case: all true positives were above 0.2 and all true negatives

below 0.03.

5.2. Clustering

We extended our small PDF set to include clusters of known

similar files. Namely, we introduced two groups of files: nine

chapters of pre-print version of an edited book and six papers

from DFRWS’06. Note that both the book chapters and the

papers were from different authors and their text content

had virtually nothing in common. However, both groups of pa-

pers were formatted in specific ways by their respective

publishers.

We ran our all-pairs test to see if any grouping will emerge.

We found that the book chapters were closely related to each

other forming two tight clusters of pair-wise similarity:

0.88–0.90, 0.66–0.69 and a bit of an outlier: 0.55. It is worth

noting that the first cluster was formed around a relatively

short file. The entire DFRWS cluster showed up as similarity

measures in the 0.12–0.19 range.

All of the remaining of the pair measurements (2003 out of

2046) involving either comparisons with non-cluster files or

comparisons across clusters below 0.09.

5.3. Efficiency and performance

Estimating the space efficiency is fairly easy – for a level

0 hash, we expect to use 256 bytes for every 64 kB of data or

a ration of 1/256 w 0.004, which is within the intended range.

For level 1 hashing the ratio is 1/4096 and the rest of the levels

are in consequential as far as storage overhead is concerned.

We benchmarked the raw hashing performance of the cur-

rent version of mrshash on a 1 GB file of random data on a dual-

core Dell with a Pentium D @ 2.8 GHz, 4 GB of RAM, and an

SATA II hard drive.

The observed performance is, essentially on par with

block-level MD5 hashing (using md5deep) with 512 byte

blocks – it took them both w40 s to complete this task. ssdeep

took w50 s to perform the same task. We find this perfor-

mance a pleasant surprise given the development stage of

our tool. So far, we have not exploited the natural parallelism

of the multi-resolution computation to utilize both processor

cores. Furthermore, the Bloom filter comparisons are tailor-

made to exploit the massive parallelism that is becoming

available on the desktop environment under the guise of

a graphics card. Recent developments, such as the NVIDIA

CUDA platform, desire by manufacturers to enable general-

purpose computation on all of its 128 processing elements.

6. Conclusions

In this paper, we presented a new approach to computing sim-

ilarity hashes for binary data. The hash uses a context discov-

ery process to split the input into variable-sized chunks and

hash them into a sequence of Bloom filters. Further, by

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 1 0 5 – S 1 1 3 S113
varying the context discovery condition through a single pa-

rameter, an entire family of such hashes is generated at

different levels of granularity. The resulting scheme has the

following desirable properties:

� Genericity – it works on arbitrary pieces of binary data and

is fairly sensitive to discovering similarities in the raw

data.

� Scalability – it enables the comparison of objects that have

several orders of magnitude difference in size. In principle,

it could accommodate practically any object that can cross

an investigator’s desk. For example, it would be practical

to search for the remnants of a file the size of 1 MB inside

the disk image that is 100 GB.

� Storage efficiency – the hashes it produces, require no more

than 0.5% in additional storage, thereby enabling the com-

parison of large drives in main memory.

� Performance – its raw hash generation rate is comparable to

existing state-of-the-art block-level cryptographic hashing

solutions.

� Standardization – while the basic approach offers a lot of

possibilities, the background work presented here enables

virtually all parameters to be standardized, which allows

out-of-the-box use, as is the case with standard hashes.

� Privacy preservation – MRS hashing opens up the possibility

of performing a limited initial inquiry into someone’s

data without obtaining a copy of it. Specifically, an MRS

hash of the target would enable specific queries, such

as, does the drive contain remnants of a particular photo,

to be answered without opening a full-scale investigation,

which can be treated as a fishing expedition by the

courts.

At publication time, a beta version of the code will be avail-

able at http://roussev.net/mrshash.

7. Future work

We would like to perform much more testing on a bigger scale

to explore whole-disk applications of this work and, in partic-

ular, applications like automated data classification.

We are very interested in taking advantage of parallel hard-

ware that is becoming increasingly available in commodity

computing systems to further improve the performance. In

particular, we expect that the GPU can be successfully

exploited to dramatically speed up the comparisons of pre-

computed MRS hashes.
r e f e r e n c e s

Bloom B. Space/time tradeoffs in hash coding with allowable
errors. Commun ACM 1970;13(7):422–6.

Brin S, Davis J, Garcia-Molina H. Copy detection mechanisms for
digital documents. In: Proceedings of the ACM SIGMOD annual
conference, San Francisco, CA, May 1995.

Broder A, Mitzenmacher M. Network applications of bloom filters:
a survey. Internet Math 2005;1(4):485–509.

Broder A, Glassman S, Manasse M, Zweig G. Syntactic clustering
of the web. In: Proceedings of the 6th international world wide
web conference, 1997. p. 393–404.

Charikar MS. Similarity estimation techniques from rounding
algorithms. In: Proceedings of the 34th annual ACM
symposium on theory of computing, 2002.

Dean J, Ghemawat S. MapReduce: simplified data processing on
large clusters. In: Proceedings of the sixth symposium on
operating system design and implementation, 2004.

Henziger M. Finding near-duplicate web pages: a large-scale
evaluation of algorithms. In: Proceedings of the 29th annual
international ACM SIGIR conference on research and
development on information retrieval, Seattle, 2006.

Karp R, Rabin M. Efficient randomized pattern-matching
algorithms. IBM J Res Dev 1987;31(2):249–60.

Kornblum J. Identifying almost identical files using context
triggered piecewise hashing. In: Proceedings of the 6th annual
DFRWS, Lafayette, IN, Aug 2006.

Mitzenmacher M. Compressed bloom filters. IEEE/ACM Trans
Netw October 2002;10(5):613–20.

Monostori K, Finkel R, Zaslavsky A, Hodasz G, Pataki M.
Comparison of overlap detection techniques. In: Proceedings
of the 2002 international conference on computational science
(I), Amsterdam, The Netherlands, 2002. p. 51–60.

Roussev V, Richard III GG. Breaking the performance wall: the case
for distributeddigital forensics. In: Proceedingsof the 2004digital
forensics research workshop (DFRWS 2004), Baltimore, MD.

Roussev V, Chen Y, Bourg T, Richard III GG. md5bloom: forensic
filesystem hashing revisited. In: Proceedings of the 6th annual
DFRWS, Lafayette, IN, Aug 2006.

Shanmugasundaram K, Bronnimann H, Memon N. Payload
attribution via hierarchical bloom filters. In: Proceedings of
the ACM symposium on communication and computer
security (CCS’04), 2004.

Shivakumar N, Garcia-Molina H. SCAM: a copy detection
mechanism for digital documents. In: Proceedings of the
international conference on theory and practice of digital
libraries, June 1995.

Shivakumar N, Garcia-Molina H. Building a scalable and accurate
copy detection mechanism. In: Proceedings of the ACM
conference on digital libraries, March 1996. p. 160–8.

Shivakumar N, Garcia-Molina H. Finding near-replicas of
documents on the web. In: Proceedings of the workshop on
web databases, March 1998. p. 204–12.

Tridgell A. Spamsum README. <http://samba.org/ftp/unpacked/
junkcode/spamsum/README>; 2002.

http://roussev.net/mrshash
http://samba.org/ftp/unpacked/junkcode/spamsum/README
http://samba.org/ftp/unpacked/junkcode/spamsum/README

	Multi-resolution similarity hashing
	Introduction
	Related work
	Block-based hashing
	Context-triggered piecewise (CTP) hashing
	Bloom filter hashing

	Design analysis
	MRS hashes
	Flat similarity hash
	Multi-resolution similarity hash

	Experimental results
	Pair-wise file similarity
	Clustering
	Efficiency and performance

	Conclusions
	Future work
	References

