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a b s t r a c t

The current generation of Graphics Processing Units (GPUs) contains a large number of

general purpose processors, in sharp contrast to previous generation designs, where spe-

cial-purpose hardware units (such as texture and vertex shaders) were commonly used.

This fact, combined with the prevalence of multicore general purpose CPUs in modern

workstations, suggests that performance-critical software such as digital forensics tools

be ‘‘massively’’ threaded to take advantage of all available computational resources.

Several trends in digital forensics make the availability of more processing power very

important. These trends include a large increase in the average size (measured in bytes)

of forensic targets, an increase in the number of digital forensics cases, and the develop-

ment of ‘‘next-generation’’ tools that require more computational resources. This paper

presents the results of a number of experiments that evaluate the effectiveness of offload-

ing processing common to digital forensics tools to a GPU, using ‘‘massive’’ numbers of

threads to parallelize the computation. These results are compared to speedups obtain-

able by simple threading schemes appropriate for multicore CPUs. Our results indicate

that in many cases, the use of GPUs can substantially increase the performance of digital

forensics tools.

ª 2007 DFRWS. Published by Elsevier Ltd. All rights reserved.
1. Introduction

This paper investigates the role that Graphics Processing

Units (GPUs) can play in enhancing the performance of digital

forensics tools. Traditionally, GPUs have been both difficult to

program and targeted at very specific problems; to perform

non-graphical calculations required techniques that recast

data as textures or geometric primitives and expressed the

calculations in terms of available graphics operations. A

new class of GPUs, such as the NVIDIA G80, have large num-

bers of general purpose stream processors that excel at exe-

cuting massively threaded algorithms. Considering their
speed, GPUs are relatively cheap and modern architectures

allow adding several GPUs to a single computer. The peak

performance of the NVIDIA line of GPUs, compared to the

peak performance of the Intel line of general purpose CPUs,

is shown in Fig. 1.

The goals of the experiments described in this paper in-

cluded measuring the effectiveness of offloading processing

common to digital forensics tools to a GPU and, even more im-

portantly, comparing the resulting performance improvement

with that attainable by using simple threading techniques on

multicore CPUs. GPU programming, even on modern GPUs, is

substantially more difficult than developing multithreaded
5 This work was supported in part by the National Science Foundation under Grant No. CNS-0627226.
* Corresponding author.

E-mail addresses: vico@cs.uno.edu (L. Marziale), golden@cs.uno.edu (G.G. Richard III), vassil@cs.uno.edu (V. Roussev).
1742-2876/$ – see front matter ª 2007 DFRWS. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2007.06.014

mailto:vico@cs.uno.edu
mailto:golden@cs.uno.edu
mailto:vassil@cs.uno.edu
http://www.elsevier.com/locate/diin


d i g i t a l i n v e s t i g a t i o n 4 S ( 2 0 0 7 ) S 7 3 – S 8 1S74
Fig. 1 – Estimated computational power, in gigaflops, of representative GPUS. Source: NVIDIA CUDA 0.8 SDK.
applications suitable for execution on multicore CPUs such as

the Intel Core2Duo or AMD Opteron. The question is whether

this additional effort is worth it. Our results suggest that the

answer is yes.

Several trends in digital forensics make the availability of

more processing power to support investigations an urgent

need. The first is a vast increase in the average size of forensic

targets encountered by investigators, which is directly attrib-

utable to the availability of cheap storage devices. This results

in long turnaround times for critical cases and ultimately

causes large case backlogs. Another trend is the increasing so-

phistication of digital forensics tools, fueled by growing inter-

est in digital forensics as a research area and by a realization

that feeds back into the first trend. This realization is that

‘‘manual’’ investigative methods, such as searching for child

pornography by viewing thumbnails or listening to every

audio file on a drive, are completely impractical when tera-

bytes of data must be processed. Finally, the number of digital

forensics cases is rising for a number of reasons, including

better awareness of digital forensics techniques in law

enforcement and in the private sector.

Currently, most digital forensics tools run on a single work-

station. For very large cases, only distributed computing (e.g.,

using a system like DELV, Roussev and Richard, 2004) will offer

enough processing power. But the performance of tools run-

ning on individual workstations can be increased substan-

tially, through a number of means. One is very careful

attention to the design of digital forensics tools, to minimize

disk accesses and data copying. Unlike commodity applica-

tions like word processors, where the ever-increasing compu-

tational power of modern CPUs can hide sloppy programming

or the excessive use of expensive abstractions, digital foren-

sics software must execute as quickly (and accurately) as pos-

sible. In some cases, lives, economic prosperity, or freedom

may hang in the balance.

Design must also take into account the trend to use

lower clock speeds and multiple compute cores in modern

CPUs. Many current generation tools are single-threaded

and without modification will be unable to take advantage

of modern hardware, including multicore processors. We

argue in this paper that new, multithreaded designs should

also consider the role that GPUs can play. GPUs excel at

single instruction, multiple data (SIMD) computations and

examples of these kinds of calculations definitely appear in

the tools we develop in the digital forensics research

community.
2. Related work

2.1. Distributed digital forensics

In some cases, only tens, hundreds, or thousands of

general purpose processors, coupled with large amounts of

RAM, will suffice to solve a large case within a reasonable

timeframe. A distributed solution, such as a digital

forensics framework running on a compute cluster (Roussev

and Richard, 2004), may be necessary. Such systems can

address both I/O and processing constraints, using

aggressive data caching techniques and performing investiga-

tive operations in parallel. The research described in this

paper is complimentary to that approach, since GPUs may

be able to speed up some cases sufficiently so they can run

on a single workstation, freeing cluster resources to process

larger cases. The techniques can also be used to build faster

clusters, by augmenting each node in a cluster with one or

more GPUs. This approach was used with older GPUs in Fan

et al. (2004).

2.2. GPUs in computer security software

A recent paper by Jacob and Brodley (2006) describes Pixel-

Snort, a port of the popular open-source intrusion detection

system (IDS), Snort. Their system offloads IDS packet pro-

cessing (specifically, comparison with Snort rules) from the

host’s CPU to an NVIDIA 6800GT. Since the 6800GT does not

present a programming model with general purpose proces-

sors (unlike the G80 used in our research), GPU programming

is complicated. The 6800GT provides vertex and fragment

processors and programs can be written to control either pro-

cessor. Jacob and Brodley convert Snort rules to textures and

then use the fragment processor to match network packets

with rules. This involved writing a fragment shader (in Cg)

that performs string searches. When a packet matches a

rule, the fragment shader writes to the framebuffer, other-

wise the packet is simply discarded. They detect matches

using a graphics technique called occlusion-query, which is

supported by OpenGL. PixelSnort offers modest performance

gains, probably limited by the complicated software architec-

ture dictated by the 6800GT’s lack of direct support for gen-

eral computations. The programming situation for GPUs is
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improving, as we point out in subsequent sections of this

paper.

2.3. GPUs for ‘‘General Purpose’’ computing

The tremendous increases in power in today’s GPUs have led

to a need for ways to utilize them for non-graphics applica-

tions. For example, the NVIDIA 8800GTX is capable of a theo-

retical maximum of 350 GFLOPS at a cost of $570 (April 2007).

Compare this to a 3.0 GHz Intel Core2Duo, which is capable of

around 40 GFLOPS, at a cost of about $266 (April 2007). This

gives $.95/GFLOP for the 8800GTX and $6.65/GFLOP for the

Core2Duo. Memory bandwidth is also much higher on the

GPU: 86.4 GB/s vs. 6 GB/s. Clearly there is reason to want to

exploit the tremendous power of the GPU.

On the downside, the prevailing GPU architecture and

other GPU implementation details lead directly to several dif-

ficulties when doing general purpose programming. Floating

point numbers are generally non-IEEE compliant. Until

recently, there was no support for integer arithmetic. There

were no random memory writes. The massively parallel na-

ture of the GPU incurs added cost at each branching operation.

As threads diverge, the GPU has to begin executing them

serially instead of in parallel. To combat these constraints,

algorithms have to be re-engineered to exploit parallelism.

In addition, the memory hierarchy can be complex, with sev-

eral types of memory of differing access granularity, speed,

and size requiring strict attention to memory allocation de-

tails. And, also until recently, coding had to be done through

a graphics API which was not particularly friendly to non-

graphics programming. Last, since moving data into and out

of the GPU is an added cost, algorithms which do not exhibit

a certain level of ‘‘arithmetic intensity’’ and, therefore take

advantage of the power of the GPU, may not overcome the

added costs.

Most coding done for GPUs is through one of a handful of

APIs. OpenGL is an open 2D and 3D API developed by Silicon

Graphics in 1992. It is a cross-platform, cross-language set of

around 250 functions for building complex graphics from

a set of primitives. Competing with OpenGL is Direct3D. This

proprietary offering from Microsoft, part of the DirectX pack-

age, is the basis for the graphics API on the Xbox and Xbox

360 console systems. Close to the Metal is ATI’s API exposing

the hardware and instruction set of its newer stream proces-

sors. Sitting above the graphics APIs are graphics and general

purpose languages. Developed by NVIDIA, C for Graphics, or

Cg, is a high-level graphics language based on C. It shares

syntax with C and adds some new features that make it more

suitable for GPU programming. In the general purpose arena is

BrookGPU from Stanford University’s Graphics Group. It con-

sists of a compiler and runtime for their general purpose

stream programming language, called Brook.

Several significant GPGPU projects have been implemented

recently. At Stony Brook’s Center For Visual Computing, a par-

allel flow simulation using the Lattice-Boltzmann Model (LBM)

was implemented on a cluster with 32 nodes with dual Xeon

2.4 GHz processors (Fan et al., 2004). Each node was equipped

with an NVIDIA GeForce FX 5800 Ultra, resulting in a 4.6 times

speedup over their CPU cluster implementation. Stanford

University’s Folding@Home project has produced a (beta) GPU
client for the ATI X series of GPUs. It provides 20–40 times

faster processing over general purpose CPUs in many of the

calculations needed to simulate the folding of proteins. They

have also created a client for the PS3 cell processor, which is

about 40 times faster than a regular CPU.

The PeakStream Application Platform (PeakStream, 2006)

from PeakStream was used to perform Monte Carlo simula-

tions for pricing financial instruments. The GPU implementa-

tion provides a 16 times speedup vs. dual 3.6 GHz Xeon

processors. At the University of North Carolina at Chapel

Hill, algorithms have been developed for performing fast com-

putation of several common database operations on GPUs

(Govindaraju et al., 2004). Database operations were broken

down into three basic types: conjunctive selections, aggrega-

tions, and semi-linear query. They achieved as high as an

order of magnitude performance gain for certain query types.

ATI has recently presented a new virtual machine abstraction

of a GPU, the Data Parallel Virtual Machine (Peercy et al., 2006).

It exposes the hardware as a data parallel processor array and

a memory controller fed by a simple command processor in

a platform independent way. This allows a developer to fully

exploit the hardware without being locked into a graphics-

centric framework. Interestingly, multiple virtual machines

can operate on one GPU or a single virtual machine can oper-

ate across multiple GPUs.

We discuss NVIDIA’s CUDA architecture, used for our

work, in a subsequent section.

2.4. File carving

File carvers (e.g., DFRWS, 2006; Foremost; Richard and

Roussev, 2005) read sets of rules, traditionally, databases of

header and footer definitions, and search one or more target

disk images for streams of bytes which potentially represent

recoverable files (or file fragments).

File carving is a very important data recovery technique

because files can be retrieved in the absence of filesystem

metadata, e.g., after this metadata is destroyed by a format

operation. While a filesystem’s metadata is fragile, file data

is much more resilient.

Treating file carving as a ‘‘typical’’ digital forensics tech-

nique makes sense because many common issues arise. First,

disk activity must be minimized, since file carvers typically

must make multiple passes over a disk image. Second, they

must perform very efficient binary string searches, because

a number of patterns must be matched against a large amount

of binary data. Finally, the sophistication of file carving is in-

creasing, with the development of techniques for reducing

false positives (through verification or deeper analysis of

type-specific file structures) and detecting and processing

fragmented files. These new techniques will in turn require

more computational resources.

3. Overview: NVIDIA G80 and CUDA

In this section we briefly describe the architecture of the NVI-

DIA G80 GPU, the 8800GTX graphics card used in our experi-

ments, and the Compute Unified Device Architecture (CUDA)

SDK, which is used to program the G80 GPU. This section is
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a summary of the information available in the CUDA SDK

documentation at NVIDIA.

The G80 contains a set of multiprocessors, each of which

contains a set of stream processors which operate on SIMD

(Single Instruction Multiple Data) programs. A high-level de-

sign of the G80 is depicted in Fig. 2. Unlike earlier GPU designs,

which had fixed numbers of special-purpose processors (e.g.,

vertex and fragment shaders), very limited support for arbi-

trary memory accesses (scatter/gather), and little or no sup-

port for integer data types, the stream processors in the G80

are general purpose. Despite this, care must still be taken to

write code which executes quickly on the GPU. One relevant

architectural constraint is that stream processors within

a multiprocessor share an instruction unit; if control flow

‘‘diverges’’, then thread execution is serialized. Another con-

straint is that access to device memory, the largest general

purpose pool of memory on the device, is uncached and

much slower than access to the other memory pools.

A unit of work issued by the host computer to the GPU is

called a kernel and defines the computation to be performed

by a large number of threads, organized in thread blocks.

Each multiprocessor executes one or more thread blocks,

with each group organized into warps. A warp is a fraction of

a thread group, comprised threads that are currently execut-

ing on a particular multiprocessor.

Fig. 2 – G80 architecture. On the 8800GTX, there are 16

multiprocessors, each containing eight stream processors,

for a total of 128 processors. The stream processors within

a multiprocessor share an instruction unit, so maximum

parallelism is obtained only when the stream processors

execute the same instruction stream (potentially on

different data). Source: NVIDIA CUDA 0.8 SDK.
Fig. 3 illustrates the organization of executing threads on

the G80 and their relationships with available memory spaces,

through which threads can communicate with each other and

with the host computer. These memory areas, with restric-

tions and associated costs, are:

� Private registers are local to a particular thread and readable

and writeable only by that thread.

� Constant memory is initialized by the host and readable by all

threads in a kernel. Constant memory is cached and a read

costs one memory read from device memory only on a cache

miss, otherwise it costs one read from the constant cache.

For all threads of a particular warp, reading from the con-

stant cache is as fast as reading from a register as long as

all threads read the same address. The cost scales linearly

with the number of different addresses read by all threads.

� Shared memory can be read and written by threads executing

within a particular thread group. The shared memory space

is divided into distinct, equal-sized banks which can be

accessed simultaneously. This memory is on-chip and can

be accessed by threads within a warp as quickly as accessing

registers, assuming there are no bank conflicts. Requests to

different banks can be serviced in one clock cycle. Requests

to a single bank are serialized, resulting in reduced memory

bandwidth.

� Texture memory is a global, read-only memory space shared

by all threads. Texture memory is cached and texture ac-

cesses cost one read from device memory only on texture

cache misses. Texture memory is initialized by the host.

Hardware texture units can apply various transformations

at the point of texture memory access.

Fig. 3 – Organization of a grid of threads in CUDA and the

relationship between threads and available memory

spaces. Source: NVIDIA CUDA 0.8 SDK.
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� Finally, global memory is uncached device memory, readable

and writeable by all threads in a kernel and by the host.

Accesses to global memory are expensive, requiring 200 or

more cycles of memory latency.

The 8800GTX card we used has a single G80 GPU, 768 MB of

device RAM, and 128 stream processors, organized into 16

multiprocessors. Each stream processor executes at 1.35 GHz.

The raw (theoretical) compute power of the 8800GTX is

approximately 350 GFLOPS. Some specific limits of the

8800GTX relevant to our work are:

� A maximum of 512 threads per thread block is allowed.

� 16 KB of shared memory is available per multiprocessor, or-

ganized into 1 K banks.

� A total of 64 K of constant memory is available, with a cache

size of 8 K per multiprocessor.

� Thread warp size on 8800GTX is 32 threads.

We now very briefly discuss the CUDA SDK, used to con-

duct our GPU experiments. CUDA programs are written in C/

Cþþ, with CUDA-specific extensions, and are compiled using

the nvcc compiler, under either Microsoft Windows or Linux. A

CUDA program consists of a host component, executed on the

CPU, and a GPU component, executed on the GPU. The host

component issues bundles of work (kernels) to be performed

by threads executing on the GPU.

There are few restrictions on the host component, other

than kernel invocations blocking the calling host thread.

CUDA provides functions for managing the GPU, memory

management functions which allow allocating and initializing

device memory, texture handling, and support for OpenGL

and Direct3D.

The code executing on the GPU has a number of constraints

that are not imposed on host code. Some of these limitations

are ‘‘absolute’’ and some simply reduce performance. In gen-

eral, standard C library functions are not available in code

executing on the GPU. CUDA does provide a limited set of

functions for handling mathematical operations, vector pro-

cessing, and texture and memory management. The most

important performance constraints are maximizing use of

shared memory, limiting access to global memory as much

as possible, and keeping threads within a warp in ‘‘lockstep’’,

since violations of the SIMD execution model result in thread

serialization.

4. GPU-enhanced digital forensics tools: case
study

4.1. Background

To test the ability of current generation GPUs to speed digital

forensics operations, we modified the file carver Scalpel

(Richard and Roussev, 2005) to support multithreaded opera-

tion. Different threading models were developed for execution

on multicore CPUs and on GPUs such as the NVIDIA G80. The

component of Scalpel most amenable to parallelization is

header/footer searches, which involve a large number of

binary string search operations. Since searching for binary
strings is a building block of many digital forensics tech-

niques, this is a reasonable place to start.

As we discussed in Section 1, comparing the effectiveness

of using a GPU to increase the performance of a digital foren-

sics tool vs. simply creating a multithreaded version of the

tool for execution on one or more multicore CPUs is impor-

tant. One reason is that the GPU may be able to offer substan-

tially more performance at a much lower price than adding

additional CPUs to a workstation. But this performance comes

at a price, namely, increased programming effort. To address

this issue we conducted our experiments on both a relatively

expensive workstation, with two multicore processors and

a GPU, as well as a more modest workstation, with a single

dual core processor and the same GPU.

For the following experiments, we modified Scalpel v1.60 to

support multhreading on both multicore CPUs (using the

POSIX Threads Pthreads library) and on the G80 GPU (using

CUDA). Scalpel processes disk images in two passes, with

the first pass reading the input in 10 MB chunks and conduct-

ing header/footer searches. Between the two passes, a sched-

ule is constructed so the second pass can perform all of the

carving operations (or, for in-place carving, Richard et al.,

2007, construct only a set of file fragment offsets and lengths).

We parallelized the header/footer processing in the first

phase as follows. For multicore machines, Scalpel was modi-

fied to spawn a thread for each file carving rule. These threads

form a pool that sleeps while Scalpel fetches a 10 MB block of

data, then wakes to perform header/footer searches on the

block, before sleeping again. In our prototype, we do not cur-

rently hide disk access times by fetching additional blocks

while the threads search, but this will be implemented in

the future. Overlapping disk I/O with computation will speed

both the multicore and GPU versions of the code.

For our initial attempt at multithreading on the GPU, carv-

ing rules are copied to the 8800GTX’s constant memory area.

Since constant memory is not cleared across kernel invoca-

tions, this operation is performed only once. Before each

kernel invocation, a 10 MB block of data is copied to global

memory on the device. The host then invokes a kernel that

creates 65,536 threads to process the block. Each GPU thread

is responsible for searching approximately 160 bytes of the

10 MB block, read directly from global memory. The sections of

the buffer processed by individual threads are chosen to over-

lap by a number of bytes equal to the longest search string, to

accommodate headers and footers that lie across section

boundaries. A simple sequential string search is used in this

version. Once all search operations for a 10 MB buffer have

been completed, the locations of discovered headers and

footers are copied back to the host. Note that for the

GPU-assisted carving, a single host thread is used which blocks

during the kernel invocation. This is deliberate, so that the per-

formance of the GPU (rather than the host processor) can be

more accurately measured. Before releasing the code, we in-

tend to create a hybrid strategy which utilizes both the main

CPU’scoresand theGPU to maximize useof available resources.

4.2. Experimental results

To measure the performance of GPU-enhanced file carving,

we ran carving operations on 20 GB and 100 GB disk images
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using a set of 30 carving rules. All carving operations used

Scalpel’s ‘‘preview’’ mode, which supports in-place carving

(Richard et al., 2007). The first set of experiments was con-

ducted on a Sun Ultra 40 with dual AMD Opteron 2218 proces-

sors, each running at 2.6 GHz. This machine had 16 GB of RAM

and a 250 GB, 7200 rpm SATA hard drive. The Opteron 2218 is

a dual core processor, so this machine has a total of four CPU

cores. The stock graphics card in this box, an NVIDIA Quadro

5500, was removed. An NVIDIA 8800GTX graphics card was in-

stalled, which is based on the G80 GPU. The 8800GTX has 128

stream processors and 768 MB of device RAM. All of the exper-

iments on this computer were conducted under Linux, run-

ning a 32-bit 2.6-series SMP kernel and the ext3 filesystem.

Before discussing the performance results, a brief note

about the performance of Scalpel 1.60 is required. During the

code review for the current research, an inefficiency in how

Scalpel 1.60 handles the scheduling of its second pass over

a disk image was noted and corrected. ‘‘Vanilla’’ Scalpel 1.60

performance (without the fix) is noted in the table, along

with the improved version (labeled Scalpel 1.60 ‘‘new q’’).

The multicore and GPU-enhanced versions of Scalpel are

based on the improved version of 1.60.

The results for the 20 GB disk image are presented in

Table 1. The released 1.60 version of Scalpel required 2672 s

to carve approximately 3 M files of 30 different types. The

improved (sequential) version of 1.60 required only 1784 s

to process the 20 GB image. The multicore version (running

multiple header/footer processing threads on the host CPUs)

offers significantly better performance, requiring only 1054 s.

Finally, when header/footer processing is offloaded to the

GPU, execution time is reduced to 860 s.

Table 2 presents the results for the 100 GB disk image. The

released 1.60 version of Scalpel required 13,067 s to carve ap-

proximately 15 M files of 30 different types. By improving the

carve scheduling (as discussed previously) in 1.60, this time

was reduced to 8725 s. The multicore version (running multi-

ple header/footer processing threads on the host CPUs)

Table 1 – Results for carving 20 GB disk image on dual
processor, dual core Sun Ultra 40 (2.6 GHz AMD Opteron
2218 processors, 16 GB RAM)

Scalpel 1.60 ‘‘vanilla’’ (s) 2672

Scalpel 1.60 ‘‘new q’’ (s) 1784

Scalpel 1.70MT-multicore (s) 1054

Scalpel 1.70MT-gpu-0.20 (s) 860

Thirty file types, w3 M files carved. Each result is the average of

multiple, sequential runs.

Table 2 – Results for carving 100 GB disk image on dual
processor, dual core Sun Ultra 40 (2.6 GHz AMD Opteron
2218 processors, 16 GB RAM)

Scalpel 1.60 ‘‘vanilla’’ (s) 13,067

Scalpel 1.60 ‘‘new q’’ (s) 8725

Scalpel 1.70MT-multicore (s) 4958

Scalpel 1.70MT-gpu-0.20 (s) 5185

Thirty file types, w15 M files carved. Each result is the average of

multiple, sequential runs.
completed processing of the disk image in 4958 s. Offloading

processing to the GPU and using only a single host thread re-

sults in an execution time of 5185 s.

For both disk images, multithreading results in substan-

tially better performance than the sequential version of the

file carver; this is not unexpected. For this set of experiments,

our GPU code is handling header/footer processing at least as

well as four 2.6 GHz host CPU cores. While these results are

promising, additional optimizations to the code running on

the GPU can yield even better performance.

Next, we substantially increased the number of threads

executed on the GPU and eliminated iteration over the 10 MB

buffer in the string search technique. Instead of spawning

a relatively small number of threads, each searching a fixed

portion of the 10 MB block of data read by Scalpel, we spawned

one thread per byte (e.g., approximately 10 million threads) for

the input buffer. Each thread simply ‘‘stands in place’’, search-

ing for all relevant headers and footers starting at its location

in a small area of shared memory, which mirrors a portion of

the buffer in device memory. This threading model is counter-

intuitive for execution on commodity CPUs, because the over-

head of managing so many threads would typically be

prohibitive. But the G80 GPU excels at thread management

and this modification substantially increases performance.

Note that the string search technique being used is still very

simple; we will return to this issue later in the section.

The performance increase obtained by using ‘‘massive’’

threading on the GPU is detailed in the second set of experi-

ments, described below.

The second set of experiments was conducted on a Dell

XPS 710 with a single Core2Duo processor running at

2.6 GHz. This machine had 4 GB of RAM and a 500 GB,

7200 rpm SATA hard drive. The Core2Duo is a dual core pro-

cessor. The same NVIDIA 8800GTX used in the Sun Ultra 40

was used. We moved our experiments to the Dell XPS because

we wanted to measure the performance of multicore and

GPU-based threading on a box with specifications (and cost)

that more closely matched those of a ‘‘typical’’ investigative

machine. At the time this paper is written (April 2007), the

Sun Ultra 40 with the Quadro 5500 replaced with the

8800GTX costs approximately $9500, while the Dell XPS costs

approximately $3500. All of the experiments on this computer

were conducted under Linux, running a 32-bit 2.6-series SMP

kernel and the ext3 filesystem.

The results for the 20 GB disk image are presented in

Table 3. The improved version of Scalpel 1.60 was used as a

baseline and required 1260 s to process the 20 GB image. The

multicore version (running multiple header/footer processing

Table 3 – Results for carving 20 GB disk image on single
processor, dual core Dell XPS 710 (2.4 GHz Core2Duo
processor, 4 GB RAM)

Scalpel 1.60 ‘‘new q’’ (s) 1260

Scalpel 1.70MT-multicore (s) 861

Scalpel 1.70MT-gpu-0.20 (s) 686

Scalpel 1.70MT-gpu-0.30 (s) 446

Thirty file types, w3 M files carved. Each result is the average of

multiple, sequential runs.
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threads on the host CPUs) executed in 861 s. Offloading pro-

cessing to the GPU, using our original search technique (0.2),

reduces execution time to 686 s. Finally, searching ‘‘in place’’

by spawning 10 million threads on the GPU (0.3) further re-

duces execution time to only 446 s. We instrumented Scalpel

to determine how much time was spent in binary string

searches. For the 20 GB cases, approximately 85% of execution

time was used searching for headers and footers. The remain-

der was largely consumed by disk operations.

Table 4 presents results for processing the 100 GB disk

image on the Core2Duo machine. The improved version of

Scalpel 1.60 requires 7105 s. Threading on the Core2Duo

reduces the time to 5096 s. Offloading searches onto the GPU,

using the original search technique (0.2), requires 4192 s. The

massive threading approach on the GPU (0.3) has the best

running time, 3198 s.

We also conducted a number of experiments that used

only a small number of carving rules. We observed the worst

performance on GPU-enhanced carving when the number of

carving rules was minimal and the size of the target was quite

large. For example, Table 5 presents results for a 500 GB disk

image for which only two file types (GIF and JPEG) were carved.

73,303 files were recovered, with the sequential and multicore

versions of Scalpel taking almost exactly the same amount of

time: 9946 and 9922 s, respectively. There is limited room for

speedup under this scenario, since the time spent performing

disk operations overwhelms the small amount of time dedi-

cated to header/footer searches. In this experiment, GPU-

enhanced Scalpel performs poorly, requiring 12,168 s. The

cause is memory transfer overhead; because host memory

and device memory are distinct, we must copy each chunk

of the disk image to the GPU, process it, and then copy results

back to host RAM. For a 500 GB image, this requires about 1 TB

of device 4 GPU memory transfers plus decoding of the re-

sults, which is performed sequentially on the host. Since there

is little work to parallelize, the cost of memory transfers to

and from the GPU plus the processing of results exceeds any

Table 4 – Results for carving 100 GB disk image on single
processor, dual core Dell XPS 710 (2.4 GHz Core2Duo
processor, 4 GB RAM)

Scalpel 1.60 ‘‘new q’’ (s) 7105

Scalpel 1.70MT-multicore (s) 5096

Scalpel 1.70MT-gpu-0.20 (s) 4192

Scalpel 1.70MT-gpu-0.30 (s) 3198

Thirty file types, w15 M files carved. Each result is the average of

multiple, sequential runs.

Table 5 – Results for carving 500 GB disk image on single
processor, dual core Dell XPS 710 (2.4 GHz Core2Duo
processor, 4 GB RAM)

Scalpel 1.60 ‘‘new q’’ (s) 9946

Scalpel 1.70MT-multicore (s) 9922

Scalpel 1.70MT-gpu-0.30 (s) 12,168

Two file types, w73,000 files carved.
possible speedup. While data compression is expected to

help, there must be a certain level of arithmetic intensity to

offset the cost of data transfer.

The last experiment is interesting for a number of reasons.

One observation is that software using a GPU should incorpo-

rate measures of potential parallelism and below certain

thresholds, the GPU should not be used. The second observa-

tion is that to overcome host to GPU and GPU to host transfer

costs in the earlier experiments, the GPU was actually exhibit-

ing remarkable speedups. The transfer rate between the G80

GPU and host, under the beta distribution of CUDA, is limited

to 2 GB/s maximum. In practice, researchers are seeing much

lower transfer rates. Currently, CUDA uses DMA to transfer

data between the host and the GPU, but these transfers are

synchronous, with computation on the GPU blocked during

the entire transfer. NVIDIA has indicated that this restriction

may be removed in a future release. Since data transfer rates

are ultimately limited by the PCI Express bus speed, this ex-

periment also exposes the need for a compression scheme

for efficient transfer of data to the GPU and transfer of results

back to the host.

4.3. Discussion

Our experiments reveal that incorporating GPU support is a vi-

able method for substantially increasing the performance of

digital forensics software that relies on binary string searches.

We expect that relevant computations that exhibit higher

‘‘arithmetic intensity’’ will similarly exhibit even higher

speedups on GPUs.

There are several factors in our current work that are lim-

iting GPU performance. The first issue is that our current GPU

work is based on CUDA 0.8, which is a beta release. The com-

piler does not generate fully optimized code (for instance, it

does not perform full loop unrolling and does not effectively

minimize register usage) and contains a number of bugs

which require us to greatly simplify our implementation.

The raw data transfer rate between the host and GPU is also

not as fast as we would expect. The full release of CUDA,

due out soon, should increase performance.

Another issue is that while the sequential version of Scal-

pel v1.60 and the multicore, multithreaded version of Scalpel

are using an optimized, efficient binary string search algo-

rithm (a modified version of the classic Boyer–Moore tech-

nique), our GPU code is currently using a simple sequential

search algorithm. To illustrate this point, consider the perfor-

mance of the multithreaded (for multicore CPUs) version of

Scalpel running on the Dell XPS box. Under the 20 GB experi-

ment on the Dell XPS, the multicore version of Scalpel takes

861 s. If the Boyer–Moore string search algorithm is replaced

with the simple one implemented on the GPU, the time in-

creases to 3544 s, almost four times slower. This does not nec-

essarily represent speedup obtainable on the GPU, because the

Boyer–Moore algorithm is more complicated, requires more

resources, and may increase thread divergence. But it does il-

lustrate substantial room for improvement. We are currently

working on implementing an improved GPU binary string

search algorithm, but this work is not yet complete.

To avoid confusing the reader, we note that in every test,

the Dell XPS significantly outperformed the more expensive
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Sun Ultra 40. Disk speed benchmarks illustrated virtually no

difference, so this is not the reason. However, we have seen

other evidence that the current generation Core2Duo proces-

sors perform significantly better than their Opteron counter-

parts. Thus, the sets of experiments on either box should be

considered independently, rather than as pitting a quad-core

machine against a dual core machine. We did not have timely

access to another machine with a PCI-E-16 slot and an appro-

priate power supply for the 8800GTX, but will expand the

number of machines in our testbed in the future.

5. Conclusion

The size of the targets that digital forensics investigators

must process continues to grow and the current generation

of digital forensics tools is already struggling to deal with

even modest-sized targets. In addition, cutting edge tools

are offering more sophisticated analysis, in an effort to

reduce manual investigative techniques. This means that

the computational resources of a single workstation are

severely strained. As a result, digital forensics researchers

must use every means available to increase the perfor-

mance of their tools. Some of the possible means include

paying critical attention to designing the most efficient soft-

ware possible, developing software that can take advantage

of modern multicore CPUs (through multithreading), using

distributed processing, and as demonstrated in this paper,

considering the use of commodity GPUs to speed appropri-

ate computation.

In this paper, we illustrated that at least one type of oper-

ation common to many types of digital forensics software,

namely, binary string searches, can be sped up substantially

by offloading work to a GPU. While the 8800GTX used in our

experiments is still relatively expensive, it will very soon be

a commodity graphics card. Furthermore, future GPU designs,

also based on general purpose stream processors, will offer

even more computational power. Our primary purpose in

writing this paper is to make it clear that it is worth the effort

to develop GPU-aware digital forensics software.

6. Future work

Several efforts related to the research presented in this pa-

per are underway. First, experimental results indicate that

the data transfer to and from the host is a significant bot-

tleneck and we are implementing a compression scheme

for data streaming into and out of the GPU to address

this issue.

Second, since workstations will increasingly have both

(several) multicore CPUs and (potentially several) powerful

GPUs, we are developing adaptive multithreading schemes

that allow threads to execute on both the host CPU(s) and

the GPU(s) in parallel. By executing I/O-bound and CPU-bound

threads on the host CPU(s) and appropriate CPU-bound

threads on the GPU, it will be possible to hide host to GPU

data transfer and disk overhead.

Finally, we are also investigating alternative binary string

search algorithms for the GPU. The degree to which a more
complex algorithm will lead to performance gains in light of

potentially increased thread divergence is still an open

question.
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