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Abstract 
Recent work on distributed RAM sharing has largely 

focused on leveraging low-latency networking technolo-
gies to optimize remote memory access. In contrast, we 
revisit the idea of RAM sharing on a commodity cluster 
with an emphasis on the prevalent Gigabit Ethernet tech-
nology. The main point of the paper is to present a practi-
cal solution—a distributed RAM disk (dRamDisk) with an 
adaptive read-ahead scheme—which demonstrates that 
spare RAM capacity can greatly benefit I/O-constrained 
applications. Specifically, our experiments show that se-
quential read/write operations can be sped up approxi-
mately 3.5 times relative to a commodity hard drive and 
that, for more random access patterns, such as the ones 
experienced on a server, the speedup can be much higher. 
Our experiments demonstrate that this speedup is ap-
proximately 90% of what is practically achievable for the 
tested system. 

1. Introduction 

The problem of pooling the RAM resources of a clus-
ter has been approached from a variety angles depending 
on the researchers’ goals and the assumed characteristics 
of the network. The specific impetus behind our work was 
born out of frustration with the performance of some 
commercial digital forensics tools. The main challenge for 
digital forensics tools is to process targets (i.e. hard 
drives, RAIDs, etc.) that are growing in size much faster 
than the ability of a single machine to handle them. As the 
system runs quickly out of memory, it starts thrashing, 
leading to multi-day processing. Normally, this would be 
solved by parallelizing the software as demonstrated in 
[19], however, this decision is at the discretion of the 
vendor. At the same time, all digital forensics processing 
is inherently I/O-bound—all data must be read at least 
once and, often, many more times to answer interactive 
queries. Therefore, having more CPU cycles may not 
yield any notable performance gains, however, having 
more RAM for caching most likely will.  

Thus, we are interested in a practical solution that can 
be easily be deployed to opportunistically utilize idle 
RAM resources (we have dozens of computers in instruc-
tional labs that are idle most of the time). Generally, the 
existence of idle RAM is a well-documented fact (e.g. 
[1]). Therefore, we expected to find a readily-available 
solution that we could simply deploy for our purposes. 
After surveying the available research/open-source sys-
tems, we could not find one that fit the bill so we set out 
to build our own. 

1.1 Goals 

Our main research goal is to develop a RAM-sharing 
system that can boost the performance of an I/O-bound 
process by utilizing a commodity gigabit cluster. In par-
ticular, we need a solution with the following properties: 
• Better performance—using remote RAM should 

yield non-trivial performance gains. 
• Transparency—RAM sharing should be transparent 

to the process. 
• Efficiency—this requirement has two sides: the sys-

tem should utilize as much as possible of the avail-
able network resources; and, a CPU-bound process 
should see no performance degradation (due to net-
working overhead). 

• Ease of use—the systems should be easy to deploy 
and administer. 

1.2 Related Work 

Distributed RAM sharing is a well-established idea, 
and a number of implementation approaches have been 
developed over the years. Generally, they fall into two 
broad categories depending on their interaction with the 
user process. The first approach is to hide the fact that the 
sharing takes place and by tricking the application into 
believing that there is more RAM available than there 
actually is. This is very similar to what the virtual mem-
ory system does for a living. The difference is that, in-
stead of coming from the hard drive, the extra memory is 



physical RAM on another machine. The second approach 
is to expose the sharing and give the application some 
means to control the sharing process.  

Before summarizing some of the practical results of 
previous systems, we should mention that a number of 
simulation studies have been performed to explore the 
viability of different ways of distributed RAM sharing. 
For example, Dahlin et al. [3] used a trace-driven simula-
tion to study the performance benefits of cooperative file 
caching using several cooperative caching algorithms. In 
[20], and later [14], Oleszkiewicz and Xiao studied the 
impact of combining network memory and job migration 
for system scalability and throughput improvement. A 
Parallel Network RAM solution, based on global man-
agement was proposed for scientific applications. 

In terms of practical solutions, a major line of re-
search has been clustered around the idea of shared virtual 
memory, first proposed almost 20 years ago [9]. The es-
sential view in this approach, surveyed in [5], is that 
strong consistency models are the root cause for underper-
formance. Thus, the focus has been on improving protocol 
implementation of ever more relaxed consistency models. 
This implies that, in the general case, the application 
needs to get involved in the sharing process to achieve 
better performance so the transparency of the memory 
sharing is compromised.  

Recently, a number of systems have been designed to 
take advantage of low-latency technologies, such as 
RDMA over InfiniBand, to present the application with 
extra remote physical memory at a cost similar to the lo-
cal memory. In [11], for example, an RDMA-optimized 
implementation of the MPI library is used to provide the 
transparent use of remote memory. In [5], a high-
performance block-level device is used to provide remote 
swap memory for the paging system. Due the low latency 
of the underlying technology, the authors were able to 
achieve, for memory-intensive applications, performance 
comparable to that of local memory and over 20 times 
faster than traditional disk paging. Such solutions are cer-
tainly viable on a high-performance cluster, however, 
they rely on hardware that is hardly a commodity. 

A completely different approach that tries to get 
around the RAM shortage is process migration. MOSIX 
[2], for example, uses a memory ushering algorithm to 
move the computation to a node with available memory 
rather than find extra memory. This, indeed, would solve 
the problem if there is a suitable node with enough RAM, 
however, this may well not be the case. 

Another approach, most closely related to our own is 
the use of RAM block-level device. Typically, this is used 
as a means to present to the file system a remote hard disk 
as local one. This realized by communicating block-level 
operations over the network, as it is done in NBD 0[12] 

and its derivative versions. In [8], Kim et al. present an 
optimized version, which achieves remote throughput that 
matches the throughput of the physical drive. The Net-
work RamDisk (NRD) presented in [7] is an extension of 
the network block device idea. NRD allows the RAM 
resources of a cluster to be presented as a single block-
level device and used in lieu of a hard drive. 

2. Design rationale 

Consistent with our goals for a simple system that 
can easily be deployed, we have opted for a design that is 
minimally invasive to the system software and is fairly 
portable. The basic architecture consists of a set of user-
level RAM server processes that provide local RAM ac-
cess to a central RAM client (Figure 1). 
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Figure 1 dRamDisk Architecture 

The client is implemented as a kernel block-level de-
vice driver. We use an application-level protocol to per-
form service discovery and to exchange block read/write 
operations over TCP socket connections. We recognize 
that all of these design choices have certain drawbacks. 
Nonetheless, for our purposes, we believe that the advan-
tages outweigh the shortcomings: 
• User-level RAM server. One obvious drawback is 

that allocated memory cannot be locked into RAM so 
there is the potential for it to be swapped out by the 
paging system. Our rationale (supported by our ex-
perience) is that, for an idle system, the issue is 
moot—the user process will be able to use up all 
available memory simply because there is no compe-
tition. On the other hand, if the system has some 
other non-trivial job to do (albeit not memory-
hungry), it should not be volunteering RAM in the 
first place since the RAM server will not be respon-
sive enough. In other words, we expect the RAM 
server host to be otherwise idle and that there is no 
real resource contention from other processes. 

• Block-level device driver. There are two obvious 
choices here. The first one is to implement file sys-



tem-level caching, which would allow optimizations 
based on the logical structure of the file system (FS) 
but would also make it FS-dependent. The alternative 
is to implement a (block-level) device that does not 
have the benefit of filesystem knowledge (and likely 
access patterns) but would work with any filesystem. 

Our decision was based on two factors. The first 
is that for our specific application domain (digital fo-
rensics), unlike in most other domains, the applica-
tions do care about unallocated space and preserving 
the original block-level layout of the FS is necessary. 

The other half of our reasoning is that modern 
operating systems already do a very good job of lay-
ing out files sequentially so simple read-ahead op-
timizations may well be enough to achieve good per-
formance. Patterson [14] has empirically documented 
the secular trend in hardware that latency improve-
ments consistently lag bandwidth and capacity.  

This, of course, has not gone unnoticed by FS 
designers and they have gone to great lengths to en-
sure sequential file layout. We could not find an em-
pirical study documenting the actual success of these 
efforts. However, from our unique (digital) forensics 
perspective we have seen enough evidence of that. 
Specifically, one of the basic tasks in forensics is data 
recovery of corrupted file systems. A standard ap-
proach is to use a file carving tool, such as scalpel 
[17], to extract sequentially laid out files based on 
header and footer signatures of different file formats. 
While this is arguably an inexact process (many file 
formats do not have well-defined headers/footers) our 
success has been very high.  

• TCP-based communication. TCP/IP processing over-
head is a well-known source of inefficiency, espe-
cially for high-speed communication networks. For a 
commodity solution seeking the lowest common de-
nominator, the only other realistic options are UDP or 
Ethernet frames. Evidently these would need separate 
reliable transmission mechanisms, very similar to the 
one already provided by TCP. In initial testing, we 
did not find any appreciable difference between a 
TCP version and a UDP one (without a reliability 
mechanism). For our first version, presented here, we 
decided to go with the baseline TCP solution and re-
visit the issue, if the performance is unsatisfactory. 

Another argument supporting TCP/IP is that IT 
users have been very reluctant to adopt more efficient 
(but less widely accepted as standards) solutions de-
signed to take advantage of more efficient communi-
cation technologies (e.g., InfiniBand). As a result, 
many vendors are providing TCP/IP emulation that 
enables users to take advantage of (most of) the op-
timization without parting with the “good old” 

TCP/IP sockets. Specialized Ethernet “accelerators” 
are emerging with TCP/IP implementations on a 
chip. Even SMP machines (e.g. from IBM) come 
with TCP/IP emulation so that the same code could 
be run on a cluster and on an SMP machine with 
shared memory. In other words, we have good reason 
to believe that TCP/IP is not going away anytime 
soon even for high-performance computing and that, 
in many cases, TCP-based solution would be able to 
directly benefit from hardware improvements. 

3. Implementation issues 

As Section 4.1 below shows, in terms of raw 
throughput, the network in our setup enjoys a 4:1 advan-
tage at the outset. Therefore, we expected that a first-cut, 
un-optimized implementation that would satisfy request 
on a block-by-block basis would show some non-trivial 
improvement. Thus, 1KB block transfers that comfortably 
fit into a single Ethernet frame would seem logical. How-
ever, the real numbers showed a less than 5% improve-
ment. Apparently, the network overhead paid for a small 
request/response data transfer is not worth it. 

Subsequent experiments confirmed that, for large 
files, simply pushing the transfer (read-ahead) unit to over 
100KB yielded substantial improvements. For small files 
that is clearly too expensive. Therefore, we implemented 
an adaptive read-ahead scheme to accommodate the con-
flicting requirements of small and large files: 
• The initial transfer unit is set to the minimum (4KB). 
• If a successive block request is adjacent to the previ-

ous block transferred, the size of the transfer unit is 
doubled subject to a maximum parameter (128KB). 

• Otherwise, the transfer unit is set to the minimum. 
The above scheme is quite similar in spirit to the TCP 

slow-start algorithm—every adjacent block request is 
treated as a “success” leading to the doubling of the trans-
fer window, while every non-adjacent one is treated as a 
failure (akin to a packet loss) and the window is shrunk. 
The minimum of 4KB was picked because it is often used 
by operating systems as a minimum allocation unit. The 
maximum was picked after testing identified it as the 
point of diminishing returns—further increases yielded 
only marginal improvements in performance.    

The presented adaptive scheme is somewhat similar 
to the one used by the Linux kernel in version 2.6 (which 
has its own issues [14]). There are at least two notable 
differences: a) at the block-device level we simply do not 
know about files so file-based optimization is not possi-
ble; b) our read-ahead is more aggressive and works along 
the file system  read-ahead. 



4. Evaluation 

In this section, we present our experimental results 
and discuss their significance. 

4.1 Experimental setup 

For our tests, we used a mix of benchmark results and 
completion times from applications we use frequently. All 
experiments were performed on the following hardware: 
• 5 x Dell Pentium 4 @ 3GHz/2GB RAM 
• 1 x Gigabit 8-port Linksys Workgroup Switch. 

All machines were running Linux 2.4 kernel. One 
host was dedicated to running the application/benchmark, 
while the other four were providing the distributed block 
device (i.e., all I/O requests/results cross the network).  

The HDD used for comparison was a randomly- 
picked 60 GB Hitachi IDE drive from our lab and was 
directly attached to the host executing the applications. 
For testing, we used the complete content of two ran-
domly chosen hard disks from our general purpose lab, 
4GB and 6GB, respectively. For the network experiments, 
the test images were preloaded onto the distributed RAM 
drive. Before the running the tests, we benchmarked both 
the HDD and the network as follows: 
• Network: End-to-end sustained bulk IP network 

transfer observed by processes: 100MB/s. (This was 
higher than our expectations so we performed the 
same experiment with two other switches—bigger 
and much more expensive—with similar results.) 

• HDD: Sustained file system level bulk transfer (mass 
sequential copy): 24MB/s.  
These baseline results show that the commodity net-

work has the clear potential to beat the commodity HDD 
for bulk transfers, which is the strong suit of the hard 
drive. For random access, we would expect the perform-
ance gap to widen considerably. 

4.2 Test results 

Throughout our design and implementation process, 
we have targeted the development of a practical solution 
that can benefit users. Therefore, a principal question for 
our testing methodology was the selection of test cases 
that best represent typical access patterns. 

After considering our goals, we concluded that the 
main measure of success is the ability to speedup sequen-
tial access patterns. The rationale here is twofold: a) it is 
the best side of hard drive performance—randomized 
patterns clearly kill HDD performance and play to our 
strengths; b) today, non-sequential access patterns are not 
the norm, but the aberration. For example, Google FS [5] 
does not even attempt to optimize for non-sequential ac-

cess. Applications that do need to access large amounts of 
data with potentially randomized patterns explicitly man-
age their I/O requests to improve performance (DBMS are 
an obvious example).  

A common exception from the above cases are file 
servers: due to concurrent independent requests the block 
requests could become really scattered. This, however, 
should naturally favor solution over a mechanical drive. 

Benchmark results 
For our benchmark testing, we used the IOzone file 

system benchmark tool (http://www.iozone.org) and 
ran identical tests for both the local and the network 
drives. Below, we summarize the numeric results (Table 
1) and provide a brief description of the different IOzone 
performance measurements. 

Table 1 IOzone benchmark results 

• Write: Sequential writing to a new file. 
• Re-write: Sequential writing to an existing file. 
• Read: Sequential reading of an existing file. 
• Re-read: Sequential reading of a file that has already 

been read. 
• Random Read: Reading from random locations 

within a file. 
• Random Write: Writing to random locations within 

a file. 
• Backwards Read: Sequential backwards reading of a 

file. 
• Strided Read: Reading a file with a strided access, 

e.g., a 4KB read followed by 200KB sequential seek, 
another 4KB read, and so on. 

• Record Re-write: Repeated writing and re-writing of 
a particular spot in a file. 

Several points are worth noting from the above table: 
• For sequential read/write operations, the distributed 

RAM disk was able to achieve 88-92% of the sus-
tainable IP bulk transfer rate over our network. 
Clearly, the write performance is not a function of 
any optimizations on our part but is an artifact of the 
ability of TCP to sustain the measured rate. In the 

HDD RAM disk
Write 24,026 92,309 284%

Rewrite 25,788 92,628 259%

Read 26,568 88,768 234%

Reread 26,487 88,357 234%

Random Read 396 9,065 2189%

Random Write 495 10,501 2021%

Backwards Read 5,071 18,216 259%

Strided Read 5,243 7,834 49%

Performance (KB/s)Test Relative 
Speedup



other hand, the read performance demonstrates that 
our aggressive adaptive scheme is able to feed 
enough data to keep TCP busy at close to peak rate.  

• For sequential read/write operations, the distributed 
RAM disk performed about 3.5 times faster than the 
IDE drive. Recall that, from the initial benchmarking, 
the raw network transfer rate (our practical limit) was 
4 times the HDD one. 

• For randomized access, the ram disk showed an aver-
age improvement of 22 times over the mechanical 
drive. At the same time, the observed transfer rate 
(~10MB/s) was 10% of the maximum, whereas for 
the hard drive that number is well under 2%.  

• The 100% improvement of backwards read over ran-
dom read for the ram disk is entirely due to the read-
ahead policy of the kernel—we did not tweak our 
read-ahead algorithm to handle this the way we han-
dle forward read for the sake of the test. We find the 
result interesting as it gives an idea of the relative ef-
fects of file system read-ahead and block device read-
ahead policies.  

• One relatively minor discrepancy are the stride read 
results for the ram drive—they are somewhat lower 
than the random access results, which we would ex-
pect that to be the absolute floor of performance. 
Since the block device does not do anything differ-
ently, our best guess is that the file system issues 
read-ahead requests that are eventually not used and 
not counted by the benchmark application.  
Application results 
The pitfalls of using benchmark results to predict ap-

plication performance are well known. Therefore, we pre-
sent some test result for known I/O-intensive applications. 
We used three different command-line tools: 
• tar—the standard Unix archiving utility; 
• md5sum—a tool for computing MD5 file hashes; 
• scalpel—an optimized tool for carving files out of 

a disk image [17]. It performs two block-level passes 
over the target (the file system is assumed to be cor-
rupted). During the first one it uses known 
header/footer signatures to identify the file locations. 
During the second pass it performs the actual carving 
by reading the identified block ranges and writing 
them as separate files.  
The tests were performed on both 4GB and 6GB 

NTFS targets described earlier. For tar and scalpel, 
both the read and writing were performed in the RAM 
device. Thus, the tar test was not performed on the 6GB 
target as our setup provided only an 8GB device, while 
tar needed 12 GB to complete the task. 

Table 2 Application test results: 4GB target 

HDD RAM disk
tar 337 92 266%

md5sum 155 46 237%

scalpel 846 331 156%

Completion time (s) Relative 
SpeedupApplication

 
Table 3 Application test results: 6GB target 

HDD RAM disk
md5sum 272 73 273%
scalpel 1,541 861 79%

Application Completion time (s) Relative 
Speedup

 
The tar/md5sum results correlate very well with the 

benchmark results with speedups falling well within the 
234-284% range observed earlier. 

The scalpel results for the two targets are not di-
rectly comparable—the execution time depends on the 
number and size of the identified files. The reason is that 
the performance is dominated by the number and size of 
files carved out during the second pass. 

4.3 Discussion 

To place our results in the context of previous work 
we compare them with respect to NRD [7], which has the 
closest goals and performance metrics to ours. A direct 
head-to-head comparison is not possible due to the vary-
ing technologies used, so our main basis for comparison is 
efficiency. One way to measure efficiency it to compare 
how well does each of the two implementations realize 
the available network bandwidth. 

For sequential read/write operations, dRamDisk util-
izes 71 and 74%, respectively, of the theoretical maxi-
mum of 1GB/s (Table 1). On the other hand, the respec-
tive numbers for NRD we derive to be 22 and 25%, for 
the 10 Mb/s Ethernet quoted. We deduce the sequential 
NRD read throughput from the performance for find 
presented in Table 2—28 MB read is completed in 104 
seconds (~276KB/s). The sequential write performance 
comes from Figure 11, which shows a 30 MB sequential 
IOzone write to take about 100 seconds (~307 KB/s). 

Clearly, other factors play into these end-to-end per-
formance measurements—quality of hardware, NIC driv-
ers, TCP/IP stack, etc. However, they cannot account for 
the threefold improvement in efficiency. Further proof 
can be found in the fact that NRD achieved only 25% 
improvement in sequential read performance relative to 
the hard drive. If we extrapolate for a network that is 4 
times faster than the HDD (our setup) the speedup would 
not exceed 100%, whereas ours stands at 234%.  



5. Conclusions and Future Work 

In this paper, we presented a practical solution for 
sharing of RAM resources on a commodity gigabit clus-
ter. The solution is based on a distributed block-level de-
vice called dRamDisk. Unlike previous work, our solution 
is targeted at improving sequential read/write operations, 
which are the dominant disk access pattern. Our experi-
ments show that sequential read/write operations can be 
sped up approximately 3.5 times relative to a commodity 
IDE hard drive. Furthermore, this speedup is approxi-
mately 90% of what is practically achievable for the 
tested system. To achieve this performance, we employ an 
adaptive read-ahead scheme which exponentially expands 
the read-ahead window during sequential reads.  

Relative to previous work, our system is approxi-
mately 3 times more efficient in its ability to use available 
network bandwidth and is able to utilize 71-74% of the 
theoretical LAN capacity. 

For random access patterns, the measured speedup is 
over 20 times. Thus, for mixed loads, such as the ones 
experienced on a server, the speedup can significantly 
exceed the baseline 3.5 factor. 

This is still early work and there are a number of fea-
tures we plan to implement and test experiments we 
would like to perform: a) an optimized multi-threaded 
read-ahead implementation to improve performance by 
reducing the penalty for unsuccessful speculation; b) file-
aware block allocation, i.e., use file system information to 
both ensure that all data blocks belonging to a file are 
stored on the same node, and to improve read-ahead suc-
cess rate; c) multi-client access; d) perform large-scale 
experiments on our 64-node cluster; e) study the effects of 
“overbooking” the RAM server, i.e., relying on the VM to 
promise more RAM than physically available. 
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