

dRamDisk: Efficient RAM Sharing on a Commodity Cluster

Vassil Roussev, Golden G. Richard, III

University of New Orleans
Department of Computer Science

New Orleans, LA 70148
<vassil@roussev.net>,<golden@cs.uno.edu>

Daniel Tingstrom
ATC-NY

33 Thornwood Drive, Suite 500
Ithaca, NY 14850-1250

<dtingstrom@atc-nycorp.com>

Abstract
Recent work on distributed RAM sharing has largely

focused on leveraging low-latency networking technolo-
gies to optimize remote memory access. In contrast, we
revisit the idea of RAM sharing on a commodity cluster
with an emphasis on the prevalent Gigabit Ethernet tech-
nology. The main point of the paper is to present a practi-
cal solution—a distributed RAM disk (dRamDisk) with an
adaptive read-ahead scheme—which demonstrates that
spare RAM capacity can greatly benefit I/O-constrained
applications. Specifically, our experiments show that se-
quential read/write operations can be sped up approxi-
mately 3.5 times relative to a commodity hard drive and
that, for more random access patterns, such as the ones
experienced on a server, the speedup can be much higher.
Our experiments demonstrate that this speedup is ap-
proximately 90% of what is practically achievable for the
tested system.

1. Introduction

The problem of pooling the RAM resources of a clus-
ter has been approached from a variety angles depending
on the researchers’ goals and the assumed characteristics
of the network. The specific impetus behind our work was
born out of frustration with the performance of some
commercial digital forensics tools. The main challenge for
digital forensics tools is to process targets (i.e. hard
drives, RAIDs, etc.) that are growing in size much faster
than the ability of a single machine to handle them. As the
system runs quickly out of memory, it starts thrashing,
leading to multi-day processing. Normally, this would be
solved by parallelizing the software as demonstrated in
[19], however, this decision is at the discretion of the
vendor. At the same time, all digital forensics processing
is inherently I/O-bound—all data must be read at least
once and, often, many more times to answer interactive
queries. Therefore, having more CPU cycles may not
yield any notable performance gains, however, having
more RAM for caching most likely will.

Thus, we are interested in a practical solution that can
be easily be deployed to opportunistically utilize idle
RAM resources (we have dozens of computers in instruc-
tional labs that are idle most of the time). Generally, the
existence of idle RAM is a well-documented fact (e.g.
[1]). Therefore, we expected to find a readily-available
solution that we could simply deploy for our purposes.
After surveying the available research/open-source sys-
tems, we could not find one that fit the bill so we set out
to build our own.

1.1 Goals

Our main research goal is to develop a RAM-sharing
system that can boost the performance of an I/O-bound
process by utilizing a commodity gigabit cluster. In par-
ticular, we need a solution with the following properties:
• Better performance—using remote RAM should

yield non-trivial performance gains.
• Transparency—RAM sharing should be transparent

to the process.
• Efficiency—this requirement has two sides: the sys-

tem should utilize as much as possible of the avail-
able network resources; and, a CPU-bound process
should see no performance degradation (due to net-
working overhead).

• Ease of use—the systems should be easy to deploy
and administer.

1.2 Related Work

Distributed RAM sharing is a well-established idea,
and a number of implementation approaches have been
developed over the years. Generally, they fall into two
broad categories depending on their interaction with the
user process. The first approach is to hide the fact that the
sharing takes place and by tricking the application into
believing that there is more RAM available than there
actually is. This is very similar to what the virtual mem-
ory system does for a living. The difference is that, in-
stead of coming from the hard drive, the extra memory is

physical RAM on another machine. The second approach
is to expose the sharing and give the application some
means to control the sharing process.

Before summarizing some of the practical results of
previous systems, we should mention that a number of
simulation studies have been performed to explore the
viability of different ways of distributed RAM sharing.
For example, Dahlin et al. [3] used a trace-driven simula-
tion to study the performance benefits of cooperative file
caching using several cooperative caching algorithms. In
[20], and later [14], Oleszkiewicz and Xiao studied the
impact of combining network memory and job migration
for system scalability and throughput improvement. A
Parallel Network RAM solution, based on global man-
agement was proposed for scientific applications.

In terms of practical solutions, a major line of re-
search has been clustered around the idea of shared virtual
memory, first proposed almost 20 years ago [9]. The es-
sential view in this approach, surveyed in [5], is that
strong consistency models are the root cause for underper-
formance. Thus, the focus has been on improving protocol
implementation of ever more relaxed consistency models.
This implies that, in the general case, the application
needs to get involved in the sharing process to achieve
better performance so the transparency of the memory
sharing is compromised.

Recently, a number of systems have been designed to
take advantage of low-latency technologies, such as
RDMA over InfiniBand, to present the application with
extra remote physical memory at a cost similar to the lo-
cal memory. In [11], for example, an RDMA-optimized
implementation of the MPI library is used to provide the
transparent use of remote memory. In [5], a high-
performance block-level device is used to provide remote
swap memory for the paging system. Due the low latency
of the underlying technology, the authors were able to
achieve, for memory-intensive applications, performance
comparable to that of local memory and over 20 times
faster than traditional disk paging. Such solutions are cer-
tainly viable on a high-performance cluster, however,
they rely on hardware that is hardly a commodity.

A completely different approach that tries to get
around the RAM shortage is process migration. MOSIX
[2], for example, uses a memory ushering algorithm to
move the computation to a node with available memory
rather than find extra memory. This, indeed, would solve
the problem if there is a suitable node with enough RAM,
however, this may well not be the case.

Another approach, most closely related to our own is
the use of RAM block-level device. Typically, this is used
as a means to present to the file system a remote hard disk
as local one. This realized by communicating block-level
operations over the network, as it is done in NBD 0[12]

and its derivative versions. In [8], Kim et al. present an
optimized version, which achieves remote throughput that
matches the throughput of the physical drive. The Net-
work RamDisk (NRD) presented in [7] is an extension of
the network block device idea. NRD allows the RAM
resources of a cluster to be presented as a single block-
level device and used in lieu of a hard drive.

2. Design rationale

Consistent with our goals for a simple system that
can easily be deployed, we have opted for a design that is
minimally invasive to the system software and is fairly
portable. The basic architecture consists of a set of user-
level RAM server processes that provide local RAM ac-
cess to a central RAM client (Figure 1).

…

…

RAM
Server
Hosts

Application

File System

Block Device

RAM
Client
Host

…

…

RAM
Server
Hosts

Application

File System

Block Device

RAM
Client
Host

Figure 1 dRamDisk Architecture

The client is implemented as a kernel block-level de-
vice driver. We use an application-level protocol to per-
form service discovery and to exchange block read/write
operations over TCP socket connections. We recognize
that all of these design choices have certain drawbacks.
Nonetheless, for our purposes, we believe that the advan-
tages outweigh the shortcomings:
• User-level RAM server. One obvious drawback is

that allocated memory cannot be locked into RAM so
there is the potential for it to be swapped out by the
paging system. Our rationale (supported by our ex-
perience) is that, for an idle system, the issue is
moot—the user process will be able to use up all
available memory simply because there is no compe-
tition. On the other hand, if the system has some
other non-trivial job to do (albeit not memory-
hungry), it should not be volunteering RAM in the
first place since the RAM server will not be respon-
sive enough. In other words, we expect the RAM
server host to be otherwise idle and that there is no
real resource contention from other processes.

• Block-level device driver. There are two obvious
choices here. The first one is to implement file sys-

tem-level caching, which would allow optimizations
based on the logical structure of the file system (FS)
but would also make it FS-dependent. The alternative
is to implement a (block-level) device that does not
have the benefit of filesystem knowledge (and likely
access patterns) but would work with any filesystem.

Our decision was based on two factors. The first
is that for our specific application domain (digital fo-
rensics), unlike in most other domains, the applica-
tions do care about unallocated space and preserving
the original block-level layout of the FS is necessary.

The other half of our reasoning is that modern
operating systems already do a very good job of lay-
ing out files sequentially so simple read-ahead op-
timizations may well be enough to achieve good per-
formance. Patterson [14] has empirically documented
the secular trend in hardware that latency improve-
ments consistently lag bandwidth and capacity.

This, of course, has not gone unnoticed by FS
designers and they have gone to great lengths to en-
sure sequential file layout. We could not find an em-
pirical study documenting the actual success of these
efforts. However, from our unique (digital) forensics
perspective we have seen enough evidence of that.
Specifically, one of the basic tasks in forensics is data
recovery of corrupted file systems. A standard ap-
proach is to use a file carving tool, such as scalpel
[17], to extract sequentially laid out files based on
header and footer signatures of different file formats.
While this is arguably an inexact process (many file
formats do not have well-defined headers/footers) our
success has been very high.

• TCP-based communication. TCP/IP processing over-
head is a well-known source of inefficiency, espe-
cially for high-speed communication networks. For a
commodity solution seeking the lowest common de-
nominator, the only other realistic options are UDP or
Ethernet frames. Evidently these would need separate
reliable transmission mechanisms, very similar to the
one already provided by TCP. In initial testing, we
did not find any appreciable difference between a
TCP version and a UDP one (without a reliability
mechanism). For our first version, presented here, we
decided to go with the baseline TCP solution and re-
visit the issue, if the performance is unsatisfactory.

Another argument supporting TCP/IP is that IT
users have been very reluctant to adopt more efficient
(but less widely accepted as standards) solutions de-
signed to take advantage of more efficient communi-
cation technologies (e.g., InfiniBand). As a result,
many vendors are providing TCP/IP emulation that
enables users to take advantage of (most of) the op-
timization without parting with the “good old”

TCP/IP sockets. Specialized Ethernet “accelerators”
are emerging with TCP/IP implementations on a
chip. Even SMP machines (e.g. from IBM) come
with TCP/IP emulation so that the same code could
be run on a cluster and on an SMP machine with
shared memory. In other words, we have good reason
to believe that TCP/IP is not going away anytime
soon even for high-performance computing and that,
in many cases, TCP-based solution would be able to
directly benefit from hardware improvements.

3. Implementation issues

As Section 4.1 below shows, in terms of raw
throughput, the network in our setup enjoys a 4:1 advan-
tage at the outset. Therefore, we expected that a first-cut,
un-optimized implementation that would satisfy request
on a block-by-block basis would show some non-trivial
improvement. Thus, 1KB block transfers that comfortably
fit into a single Ethernet frame would seem logical. How-
ever, the real numbers showed a less than 5% improve-
ment. Apparently, the network overhead paid for a small
request/response data transfer is not worth it.

Subsequent experiments confirmed that, for large
files, simply pushing the transfer (read-ahead) unit to over
100KB yielded substantial improvements. For small files
that is clearly too expensive. Therefore, we implemented
an adaptive read-ahead scheme to accommodate the con-
flicting requirements of small and large files:
• The initial transfer unit is set to the minimum (4KB).
• If a successive block request is adjacent to the previ-

ous block transferred, the size of the transfer unit is
doubled subject to a maximum parameter (128KB).

• Otherwise, the transfer unit is set to the minimum.
The above scheme is quite similar in spirit to the TCP

slow-start algorithm—every adjacent block request is
treated as a “success” leading to the doubling of the trans-
fer window, while every non-adjacent one is treated as a
failure (akin to a packet loss) and the window is shrunk.
The minimum of 4KB was picked because it is often used
by operating systems as a minimum allocation unit. The
maximum was picked after testing identified it as the
point of diminishing returns—further increases yielded
only marginal improvements in performance.

The presented adaptive scheme is somewhat similar
to the one used by the Linux kernel in version 2.6 (which
has its own issues [14]). There are at least two notable
differences: a) at the block-device level we simply do not
know about files so file-based optimization is not possi-
ble; b) our read-ahead is more aggressive and works along
the file system read-ahead.

4. Evaluation

In this section, we present our experimental results
and discuss their significance.

4.1 Experimental setup

For our tests, we used a mix of benchmark results and
completion times from applications we use frequently. All
experiments were performed on the following hardware:
• 5 x Dell Pentium 4 @ 3GHz/2GB RAM
• 1 x Gigabit 8-port Linksys Workgroup Switch.

All machines were running Linux 2.4 kernel. One
host was dedicated to running the application/benchmark,
while the other four were providing the distributed block
device (i.e., all I/O requests/results cross the network).

The HDD used for comparison was a randomly-
picked 60 GB Hitachi IDE drive from our lab and was
directly attached to the host executing the applications.
For testing, we used the complete content of two ran-
domly chosen hard disks from our general purpose lab,
4GB and 6GB, respectively. For the network experiments,
the test images were preloaded onto the distributed RAM
drive. Before the running the tests, we benchmarked both
the HDD and the network as follows:
• Network: End-to-end sustained bulk IP network

transfer observed by processes: 100MB/s. (This was
higher than our expectations so we performed the
same experiment with two other switches—bigger
and much more expensive—with similar results.)

• HDD: Sustained file system level bulk transfer (mass
sequential copy): 24MB/s.
These baseline results show that the commodity net-

work has the clear potential to beat the commodity HDD
for bulk transfers, which is the strong suit of the hard
drive. For random access, we would expect the perform-
ance gap to widen considerably.

4.2 Test results

Throughout our design and implementation process,
we have targeted the development of a practical solution
that can benefit users. Therefore, a principal question for
our testing methodology was the selection of test cases
that best represent typical access patterns.

After considering our goals, we concluded that the
main measure of success is the ability to speedup sequen-
tial access patterns. The rationale here is twofold: a) it is
the best side of hard drive performance—randomized
patterns clearly kill HDD performance and play to our
strengths; b) today, non-sequential access patterns are not
the norm, but the aberration. For example, Google FS [5]
does not even attempt to optimize for non-sequential ac-

cess. Applications that do need to access large amounts of
data with potentially randomized patterns explicitly man-
age their I/O requests to improve performance (DBMS are
an obvious example).

A common exception from the above cases are file
servers: due to concurrent independent requests the block
requests could become really scattered. This, however,
should naturally favor solution over a mechanical drive.

Benchmark results
For our benchmark testing, we used the IOzone file

system benchmark tool (http://www.iozone.org) and
ran identical tests for both the local and the network
drives. Below, we summarize the numeric results (Table
1) and provide a brief description of the different IOzone
performance measurements.

Table 1 IOzone benchmark results

• Write: Sequential writing to a new file.
• Re-write: Sequential writing to an existing file.
• Read: Sequential reading of an existing file.
• Re-read: Sequential reading of a file that has already

been read.
• Random Read: Reading from random locations

within a file.
• Random Write: Writing to random locations within

a file.
• Backwards Read: Sequential backwards reading of a

file.
• Strided Read: Reading a file with a strided access,

e.g., a 4KB read followed by 200KB sequential seek,
another 4KB read, and so on.

• Record Re-write: Repeated writing and re-writing of
a particular spot in a file.

Several points are worth noting from the above table:
• For sequential read/write operations, the distributed

RAM disk was able to achieve 88-92% of the sus-
tainable IP bulk transfer rate over our network.
Clearly, the write performance is not a function of
any optimizations on our part but is an artifact of the
ability of TCP to sustain the measured rate. In the

HDD RAM disk
Write 24,026 92,309 284%

Rewrite 25,788 92,628 259%

Read 26,568 88,768 234%

Reread 26,487 88,357 234%

Random Read 396 9,065 2189%

Random Write 495 10,501 2021%

Backwards Read 5,071 18,216 259%

Strided Read 5,243 7,834 49%

Performance (KB/s)Test Relative
Speedup

other hand, the read performance demonstrates that
our aggressive adaptive scheme is able to feed
enough data to keep TCP busy at close to peak rate.

• For sequential read/write operations, the distributed
RAM disk performed about 3.5 times faster than the
IDE drive. Recall that, from the initial benchmarking,
the raw network transfer rate (our practical limit) was
4 times the HDD one.

• For randomized access, the ram disk showed an aver-
age improvement of 22 times over the mechanical
drive. At the same time, the observed transfer rate
(~10MB/s) was 10% of the maximum, whereas for
the hard drive that number is well under 2%.

• The 100% improvement of backwards read over ran-
dom read for the ram disk is entirely due to the read-
ahead policy of the kernel—we did not tweak our
read-ahead algorithm to handle this the way we han-
dle forward read for the sake of the test. We find the
result interesting as it gives an idea of the relative ef-
fects of file system read-ahead and block device read-
ahead policies.

• One relatively minor discrepancy are the stride read
results for the ram drive—they are somewhat lower
than the random access results, which we would ex-
pect that to be the absolute floor of performance.
Since the block device does not do anything differ-
ently, our best guess is that the file system issues
read-ahead requests that are eventually not used and
not counted by the benchmark application.
Application results
The pitfalls of using benchmark results to predict ap-

plication performance are well known. Therefore, we pre-
sent some test result for known I/O-intensive applications.
We used three different command-line tools:
• tar—the standard Unix archiving utility;
• md5sum—a tool for computing MD5 file hashes;
• scalpel—an optimized tool for carving files out of

a disk image [17]. It performs two block-level passes
over the target (the file system is assumed to be cor-
rupted). During the first one it uses known
header/footer signatures to identify the file locations.
During the second pass it performs the actual carving
by reading the identified block ranges and writing
them as separate files.
The tests were performed on both 4GB and 6GB

NTFS targets described earlier. For tar and scalpel,
both the read and writing were performed in the RAM
device. Thus, the tar test was not performed on the 6GB
target as our setup provided only an 8GB device, while
tar needed 12 GB to complete the task.

Table 2 Application test results: 4GB target

HDD RAM disk
tar 337 92 266%

md5sum 155 46 237%

scalpel 846 331 156%

Completion time (s) Relative
SpeedupApplication

Table 3 Application test results: 6GB target

HDD RAM disk
md5sum 272 73 273%
scalpel 1,541 861 79%

Application Completion time (s) Relative
Speedup

The tar/md5sum results correlate very well with the

benchmark results with speedups falling well within the
234-284% range observed earlier.

The scalpel results for the two targets are not di-
rectly comparable—the execution time depends on the
number and size of the identified files. The reason is that
the performance is dominated by the number and size of
files carved out during the second pass.

4.3 Discussion

To place our results in the context of previous work
we compare them with respect to NRD [7], which has the
closest goals and performance metrics to ours. A direct
head-to-head comparison is not possible due to the vary-
ing technologies used, so our main basis for comparison is
efficiency. One way to measure efficiency it to compare
how well does each of the two implementations realize
the available network bandwidth.

For sequential read/write operations, dRamDisk util-
izes 71 and 74%, respectively, of the theoretical maxi-
mum of 1GB/s (Table 1). On the other hand, the respec-
tive numbers for NRD we derive to be 22 and 25%, for
the 10 Mb/s Ethernet quoted. We deduce the sequential
NRD read throughput from the performance for find
presented in Table 2—28 MB read is completed in 104
seconds (~276KB/s). The sequential write performance
comes from Figure 11, which shows a 30 MB sequential
IOzone write to take about 100 seconds (~307 KB/s).

Clearly, other factors play into these end-to-end per-
formance measurements—quality of hardware, NIC driv-
ers, TCP/IP stack, etc. However, they cannot account for
the threefold improvement in efficiency. Further proof
can be found in the fact that NRD achieved only 25%
improvement in sequential read performance relative to
the hard drive. If we extrapolate for a network that is 4
times faster than the HDD (our setup) the speedup would
not exceed 100%, whereas ours stands at 234%.

5. Conclusions and Future Work

In this paper, we presented a practical solution for
sharing of RAM resources on a commodity gigabit clus-
ter. The solution is based on a distributed block-level de-
vice called dRamDisk. Unlike previous work, our solution
is targeted at improving sequential read/write operations,
which are the dominant disk access pattern. Our experi-
ments show that sequential read/write operations can be
sped up approximately 3.5 times relative to a commodity
IDE hard drive. Furthermore, this speedup is approxi-
mately 90% of what is practically achievable for the
tested system. To achieve this performance, we employ an
adaptive read-ahead scheme which exponentially expands
the read-ahead window during sequential reads.

Relative to previous work, our system is approxi-
mately 3 times more efficient in its ability to use available
network bandwidth and is able to utilize 71-74% of the
theoretical LAN capacity.

For random access patterns, the measured speedup is
over 20 times. Thus, for mixed loads, such as the ones
experienced on a server, the speedup can significantly
exceed the baseline 3.5 factor.

This is still early work and there are a number of fea-
tures we plan to implement and test experiments we
would like to perform: a) an optimized multi-threaded
read-ahead implementation to improve performance by
reducing the penalty for unsuccessful speculation; b) file-
aware block allocation, i.e., use file system information to
both ensure that all data blocks belonging to a file are
stored on the same node, and to improve read-ahead suc-
cess rate; c) multi-client access; d) perform large-scale
experiments on our 64-node cluster; e) study the effects of
“overbooking” the RAM server, i.e., relying on the VM to
promise more RAM than physically available.

6. References
[1] A. Acharya and S. Setia. “Availability and utility of idle

memory in workstation clusters”. In Proceedings of the
1999 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, 1999.

[2] A. Barak and A. Braverman. “Memory ushering in a scal-
able computing cluster”. In Proceedings of IEEE Third In-
ternational Conference on Algorithms and Architecture for
Parallel Processing, 1997.

[3] M. Dahlin et al. “Cooperative caching: Using remote client
memory to improve file system performance”. In Proceed-
ing of the First Symposium on Operating Systems Design
and Implementation, 1994.

[4] C. Dubnicki et al. “Software Support for Virtual Memory
Mapped Communication”. In Proceedings of the 10th In-
ternational Parallel Processing Symposium, 1996.

[5] S. Ghemawat, H. Gobioff, and S. Leung. “The Google File
System”, In Proceedings of 19th ACM Symposium on Op-
erating Systems Principles, 2003

[6] L. Iftode and J. Singh. “Shared Virtual Memory: Progress
and Challenges”, In Proceedings of the IEEE, Vol 87(3),
1999.

[7] M. Flouris and E. Markatos. “The Network RamDisk: Us-
ing remote memory on heterogeneous NOWs”. Journal of
Cluster Computing, 2(4):281–293, 1999.

[8] Kangho Kim, Jin-Soo Kim, and Sung-In Jung.
“GNBD/VIA: A Network Block Device over Virtual Inter-
face Architecture on Linux”. Proceedings of the 16th Inter-
national Parallel and Distributed Processing Symposium,
2002.

[9] K. Li. “Shared Virtual Memory on Loosely-coupled Multi-
processors”. PhD thesis, Yale University, 1986. Tech Re-
port YALEU-RR-492.

[10] S. Liang, R. Noronha and D. K. Panda. “Swapping to re-
mote memory over InfiniBand: An Approach using a High
Performance Network Block Device”, Proceedings of the
IEEE Cluster Computing, 2005.

[11] J. Liu, J. Wu, and D. K. Panda. “High Performance
RDMA-Based MPI Implementation over InfiniBand”. In-
ternational Journal of Parallel Programming, 32(3), 2004.

[12] P. Machek. Network Block Device (TCP version).
http://nbd.sourceforge.net/.

[13] E. P. Markatos and G. Dramitinos. “Implementation of a
Reliable Remote Memory Pager”. In Proceedings of the
USENIX Annual Technical Conference, 1996.

[14] J. Oleszkiewicz, L. Xiao, and Y. Liu. “Parallel Network
RAM: Effectively Utilizing Global Cluster Memory RAM:
Effectively Utilizing Global Cluster Memory”, In Proceed-
ings of the 33rd International Conference on Parallel
Processing, 2004.

[15] R. Pai, B.Pulavarty, and M.Cao. “Linux 2.6 performance
improvement through readahead optimization”, In Proceed-
ings of Proceedings of the Linux Symposium, 2004.

[16] D. Patterson, “Latency Lags Bandwidth”, Communications
of the ACM, 47(10), 2004.

[17] Philipp Reisner. “DRBD—Distributed Replicated Block
Device”. 9th International Linux System Technology Con-
ference, 2002.

[18] G. Richard and V. Roussev. ”Scalpel: A Frugal, High Per-
formance File Carver”, In Proceedings of the Fifth Digital
Forensics Research Workshop, (DFRWS) 2005.

[19] V. Roussev and G. Richard. “Breaking the Performance
Wall: The Case for Distributed Digital Forensics”. In Pro-
ceedings of the Fourth DFRWS, 2004.

[20] L. Xiao, X. Zhang, and S. A. Kubricht. “Incorporating Job
Migration and Network RAM to Share Cluster Memory
Resources”. In Proceedings of the Ninth IEEE Interna-
tional Symposium on High Performance Distributed Com-
puting, 2000.

