
SECURE, AUDITED PROCESSING OF DIGITAL
EVIDENCE: FILESYSTEM SUPPORT FOR
DIGITAL EVIDENCE BAGS

Golden G. Richard III and Vassil Roussev
Department of Computer Science, University of New Orleans
New Orleans, Louisiana 70148, USA
golden,vassil@cs.uno.edu

Abstract Traditional digital forensics methods capture, preserve, and analyze dig-
ital evidence in standard electronic containers: images of seized hard
drives (e.g., created using the Unix dd command) are stored in regu-
lar files and documents are typically processed “as is”. Auditing of a
digital investigation, from identification and seizure of evidence through
duplication and investigation is essentially ad hoc, recorded in separate
log files or in an investigator’s case notebook. Auditing performed in
this fashion is bound to be incomplete, because different tools provide
widely disparate amounts of auditing information. Over the course of
an investigation, a piece of digital evidence may be touched by many
different tools, some of which generate no audit trail of their actions
(e.g., dd or the command line tools of the Sleuth Kit) and some that
generate their own audit logs (e.g., FTK). At the end, an investigator is
left to piece together these bits of audit trail to create a comprehensive
view of what occurred during the investigation.

Digital Evidence Bags (DEBs) are a recently proposed mechanism
for bundling digital evidence, associated metadata, and audit logs into
a single structure. DEBs categorize the digital evidence they contain
and provide a mechanism for associating an audit log that details the
investigative processes that have been applied throughout an investi-
gation. DEB-compliant applications can update a DEB’s audit log as
evidence is introduced into the bag and as data in the bag is processed.
This paper investigates native filesystem support for DEBs, which has
a number of benefits over ad hoc modification of digital evidence bags.
The first is that some of the advantages of DEBs can be realized even for
current generation tools which are DEB-unaware, since a DEB-enabled
filesystem can transparently offer the contents of a digital bag to such
tools, while automatically updating the DEB’s metadata and audit log.
Another advantage, even for DEB-enabled tools, is that the code for
updating a DEB, both for introducing and removing items and for up-
dating the audit log, needs to be certified only once. Finally, a stan-

2

dard API for accessing DEBs will greatly reduce the effort in adding
DEB support to both existing and future applications. Native filesys-
tem support for a digital evidence container is an example of what we
believe is an urgent need in the digital forensics community: digital
forensics-aware operating systems components, which can increase the
consistency, security and performance of digital forensics investigations.

Keywords: Digital forensics, operating systems internals, filesystems, digital evi-
dence bags

1. Introduction
Currently, the majority of digital forensics tools operate over stan-

dard operating systems components-for example, standard filesystems
and caching mechanisms. But there are compelling performance, con-
sistency, and security reasons for making operating systems components
digital forensics-aware. These include performance (e.g., better data dis-
tribution and clustering mechanisms, particularly for distributed digital
forensics [7]), security (e.g., protection of digital evidence from unautho-
rized access or tampering), and consistency. In this paper, we consider
both the advantages and design challenges of forensics-aware filesystems.
Specifically, we consider how auditing of digital evidence is currently
handled and how an enhanced filesystem can make this process much
more automated and more accurate.

Evidence bags and seals are a standard item in traditional crime scene
investigation. Bags and seals allow evidence to be preserved and catego-
rized and tamper-evident designs indicate if the evidence is still secure.
Many types of evidence bags provide ample writing space, so that notes
can be written directly on the bag. Further, the bag’s seal may include
information such as the name of the investigating officer, case identi-
fiers, the suspect’s name, a description of the item, and the date and
time when the bag was sealed. Continuity sections on the bag allow
tracking the movement of the bag, noting the chain of custodians who
have undertaken the bag’s care.

Traditional digital forensics methods capture, preserve, and analyze
digital evidence in standard electronic containers: images of seized hard
drives (e.g., created using the Unix dd command) are stored in regu-
lar files and documents are typically processed “as is”. Auditing of a
digital investigation, from identification and seizure of evidence through
duplication and investigation is essentially ad hoc, recorded in separate
log files or in an investigator’s case notebook. For example, dd provides
no direct method for capturing information such as when the imag-
ing operation took place, who performed the operation, or an integrity

Secure, Audited Processing of Digital Evidence: Filesystem Support for Digital Evidence Bags3

check. This information must be recorded separately and in the case of
the integrity check, additional commands (such as md5sum or a simi-
lar cryptographic hashing command) must be executed and the output
recorded manually. While enhanced versions of dd exist, such as dcfldd,
adding integrity checks to each application is tedious and error-prone. In
addition, the integrity problem is aggravated further when large chunks
of digital evidence must be split into pieces, for example, when a disk
image is fragmented to fit on removable storage, and then reassembled
for processing.

Ad hoc auditing is bound to be incomplete, because different tools pro-
vide widely disparate amounts of auditing information, much of which
must be recorded manually by an investigator. Over the course of an
investigation, a piece of digital evidence may be touched by many differ-
ent tools, some of which generate no audit trail of their actions (e.g., dd
or the command line tools of the Sleuth Kit [1]) and some that generate
their own audit logs (e.g., FTK [2]). At the end, an investigator is left
to piece together these bits of audit trail to create a comprehensive view
of what occurred during the investigation. Further, failure to record a
bit of information, such as the MD5 hash generated by md5sum for a
large disk image, could potentially result in a huge amount of lost time
if the operation must be repeated.

Digital Evidence Bags (DEBs) [6] provide a new approach for stor-
ing and processing digital evidence obtained from a variety of sources
and serve as a universal container for digital evidence, much as tradi-
tional evidence bags serve as containers for other types of forensic ev-
idence. DEBs bundle digital evidence, associated metadata, and audit
logs into a single structure, providing an audit trail of operations per-
formed on the digital evidence in the bag as well as integrity checks. In
addition to providing increased security for digital evidence, the audit
log details the investigative processes that have been applied through-
out an investigation. This is potentially useful from educational and
evaluation standpoints, allowing novice investigators to see what steps
were taken, which tools were used, and in which order they were used.
DEB-compliant applications can update a DEB’s audit log as evidence
is introduced into the bag and as data in the bag is processed. In this
paper, we suggest that while adoption of a standard format for storage
of digital evidence will offer radical improvements in the investigative
process, system support for DEBs will be even more useful. This paper
investigates native filesystem support for DEBs, in which the basic file
type is a Digital Evidence Bag. This provides a number of benefits over
ad hoc implementations of DEB support. The first is that some of the
advantages of DEBs can be realized even for current generation tools

4

which are DEB-unaware, since a DEB-enabled filesystem can transpar-
ently offer the contents of a digital bag to such tools, while automatically
updating the DEB’s metadata and audit log. Another advantage, even
for DEB-enabled tools, is that the code for accessing a DEB, including
introduction and removal of items from the bag and updates to the audit
log and metadata, needs to be certified only once. Finally, a standard
API for accessing DEBs will greatly reduce the effort in adding DEB
support to both existing and future applications.

2. Basic DEB Structure
The basic structure of Digital Evidence Bags (DEBs) is outlined in [6].

A working group was discussed at DFRWS 2005 to provide a forum for
further development of the format and as this paper is written, no final
standard has been proposed. As such, we sketch the structure of a DEB
at a high level only, discussing DEB components necessary for native
file system support. The reader is referred to [6] for a possible concrete
implementation. A DEB consists of a collection of objects. The first
is the tag area, which is a set of name/value pairs containing metadata
associated with the DEB. This information includes a unique identifier
for the DEB, the creation date and time, the name and organization
of the creator of the DEB, and a list of Evidence Units (EUs) stored
in the DEB. Each EU provides a name for a distinct blob of digital
evidence stored in the bag and the blob’s associated index file. An index
file describes one blob of digital evidence in detail, detailing the files
contained in the blob or the physical characteristics and model/serial
number of an imaged disk device. Finally, an audit log (called a Tag
Continuity Block in [6]) tracks the operations performed against a DEB,
including the date, time, affected blocks, application signature, of each
operation as well as periodic hashes of the DEB contents. We note in
Section 3.4 that secure auditing techniques can be used to protect the
DEB contents against tampering.

3. Design Overview
The basic ideas in providing native filesystem support for DEBs are:

to allow transparent import of DEBs into an enabled filesystem-
that is, automatic conversion of DEBs copied into the filesystem
into a native storage format.

to allow transparent export of DEBs from an enabled filesystem
to a “normal” filesystem-that is, automatic conversion of DEBs

Secure, Audited Processing of Digital Evidence: Filesystem Support for Digital Evidence Bags5

stored in the enabled filesystem to a popular container format,
such as XML.

to allow provide efficient, secure, easy-to-use access to DEBs for
both new, DEB-enabled applications as well as legacy applications.

The next section surveys some design choices for meeting these goals.
The following sections define an API for DEB-enabled applications, dis-
cuss how native applications can transparently access DEBs, and discuss
methods for securing the DEB audit log.

3.1 Design Choices
When stored outside the DEB-enabled filesystem, a format such as

XML is a sensible choice for DEB files. In the draft specification outlined
in [6], plain text was used for components of a DEB. A more efficient
format is required, however, for native storage of DEBs. This is because
unlike other compound file types, such as ZIP files or tarballs, DEBs
will be updated quite frequently as units of evidence are introduced
and the audit log is modified. It is also likely that some DEBs will be
extremely large, so methods for in-place updates will be necessary for
efficient access. In summary, a native storage format for a DEB-enabled
filesystem should support not only efficient updates of the audit log, but
also fast access to the digital evidence blobs.

We evaluated the capabilities of several filesystems before choosing
a candidate for native DEB support, including ext2/3, reiserFS, and
XFS. NTFS was eliminated from consideration because source code is
not available, although NTFS alternate data streams are an attractive
mechanism for implementing DEB resource forks (e.g., blobs of digital
evidence, the audit log, and DEB metadata). Most of these filesys-
tems contain features that can potentially be used to efficiently sup-
port DEBs, such as extended attributes (EAs). Unfortunately, the ex-
tended attributes implementation in ext2/3 places substantial limits on
the maximum size of EAs (one disk block), precluding their use to store
larger components in a DEB. Similarly, XFS and stable versions of reis-
erFS have limitations on maximum sizes of EAs. In a future version
of reiserFS, EAs will be stored as regular files in the filesystem, with
the filename referring to the name of the EA and the file contents being
the associated value of the extended attribute. We are adopting a simi-
lar strategy for storing DEB components, using symbolic links. This is
discussed further below.

In the end, we believe that the best choice is to use a standard filesys-
tem, such as ext3. The resource forks within a DEB can be stored as
separate files by using symbolic links stored within the first data block

6

of a DEB file. Changes are also required at the inode level (to tag DEBs
as a special type of file and to accommodate efficient storage of DEBs),
to pathname handling (to allow transparent access to digital evidence
blobs within a DEB using a convention like DEBname.blobname), and
at the system call level (to support the proposed DEB API and to sup-
port legacy applications). At the system call level, standard file I/O
calls such as read() and write() must be modified to perform auditing
functions in addition to accessing blocks of a blob stored within a DEB.

To test our ideas, we are currently using a user-level filesystem, FUSE
(File System in User Space) [3], for prototyping. In FUSE, system calls
are redirected by a kernel-level FUSE component into a user-space ap-
plication (written against the FUSE library). This has allowed us to
rapidly build a proof-of-concept primarily in user-space, without the
complexity of in-kernel hacking.

3.2 An API for DEB-enabled Applications
In this section we present an API for enabled applications to create,

access, and modify DEBs. The functions fall into three categories. The
first group of functions allow digital evidence bags to be created and
for “blobs” of digital evidence to be introduced into a DEB. A blob is
an arbitrary unit of digital evidence and might be a disk image, a sin-
gle document, or a compound file type. The second group of functions
allows access to a DEB’s tags. Recall that the tags record DEB meta-
data, such as the investigating agent’s name and contact information.
The third group of functions provide access to the DEB’s audit log, so
that applications can insert additional entries into the log to document
investigative operations. Use of any of the functions automatically in-
troduces entries into the DEB’s audit log. Each function is described
briefly below.

int CreateDEB(char *filename, char *applicationinfo, char *com-
ment, /* variable number of DEB tags */);
Creates a new Digital Evidence Bag whose complete pathname
is filename. The comment field is a free-form string entered into
the audit log to describe the creation event, while applicationinfo
documents the application creating the DEB. A variable number
of tags, which document the investigator’s name, contact informa-
tion, and case characteristics are permitted. An initial entry is
made in the DEB’s audit log to document the creation event. This
entry also contains a hash of the initial DEB contents, which at
this stage are essentially metadata. The AddDEBBlob() function,
described below, allows digital evidence to be introduced into the

Secure, Audited Processing of Digital Evidence: Filesystem Support for Digital Evidence Bags7

bag. A positive return value indicates successful creation of the
bag.

int AddDEBBlob(char *filename, char *blobname, void *blob,
char *applicationinfo, char *comment);

Introduces a new piece of digital evidence, blob, named blobname,
into the bag whose pathname is filename. The blobname must
uniquely identify the piece of digital evidence in the DEB, other-
wise an error is generated. The comment is introduced into the
DEB’s audit log to describe the digital evidence introduced, while
applicationinfo documents the application itself. In addition, au-
dit log entries are automatically written to document the crypto-
graphic hash of the introduced evidence plus a hash of the entire
bag contents after introduction is completed. A positive return
value indicates successful introduction of the blob.

int AddDEBBlobFile(char *filename, char *blobname, char *blob-
filename, char *applicationinfo, char *comment);

This function performs the same operations as AddDEBBlob(),
except that the digital evidence to introduce is contained in the
file named blobfilename, instead of in a block of memory.

int OpenDEBBlob(char *filename, char *blobname, int mode, char
*applicationinfo, char *comment);

Returns a file handle attached to the blob with name blobname con-
tained in the DEB whose complete pathname is filename. The file
handle is opened with read/write permissions described by mode,
which has the same semantics as the mode parameter for the stan-
dard C open() function. The applicationinfo argument describes
the application issuing the open while the comment describes the
open operation (from the opening application’s perspective) in the
DEB’s audit log. A positive return value indicates success.

void CloseDEBBlob(int handle, char *comment);

Releases the file handle handle, attached to a single blob of evi-
dence in a DEB. The comment describes the close operation (from
the close-ing application’s perspective) in the DEB’s audit log.

unsigned long long ReadDEBBlobBlock(int handle, void *data, un-
signed long long len, char *comment);

Reads a block of data from the stream identified by handle. This
handle must have been obtained from a call to OpenDEBBlob().
The length of the block to read is len. The comment argument

8

describes the read operation from the application’s perspective.
Returns the number of bytes read.

unsigned long long WriteDEBBlobBlock(int handle, void *data,
unsigned long long len, char *comment);

Writes a block of data to the stream identified by handle. This
handle must have been obtained from a call to OpenDEBBlob().
The length of the block to write is len. The comment argument
describes the write operation from the application’s perspective.
Returns the number of bytes written.

char *GetDEBTagValue(char *filename, char *tagname, char *ap-
plicationinfo, char *comment);

Returns a pointer to a string containing the value of the tag tag-
name associated with the DEB identified by filename. The applica-
tioninfo argument describes the application issuing the operation
while the comment describes the operation in further detail in the
DEB’s audit log. NULL is returned if the tag’s value cannot be
returned.

int PutDEBTagValue(char *filename, char *tagname, char *ap-
plicationinfo, char *comment);

Creates (or modifies) the tag identified by tagname, setting (or
replacing) its value by tagvalue for the DEB identified by filename.
The applicationinfo argument describes the application issuing the
operation while the comment describes the operation in further
detail in the DEB’s audit log. A positive return value indicates
successful modification of the tag.

int OpenDEBAuditLog(char *filename, char *applicationinfo, char
*comment);

Returns a file handle associated with the audit log for the DEB
filename. The file handle’s mode is read-only. This function’s
primary use is for reviewing the audit log. To modify the audit
log, AppendDEBAuditLog() must be used.

void CloseDEBAuditLog(int handle, char *applicationinfo, char
*comment);

Closes the audit log stream associated with handle.

int AppendDEBAuditLog(char *filename, char *auditentry, char
*applicationinfo, char *comment);

Secure, Audited Processing of Digital Evidence: Filesystem Support for Digital Evidence Bags9

Appends a log entry auditentry to the audit log associated with
the DEB identified by filename. A positive return value indicates
a successful append operation.

3.3 Support for Non-DEB-enabled Applications
Native filesystem support for Digital Evidence Bags allows DEBs to

be used even with non-enabled applications. Rather than using the API
suggested in Section 3.2, legacy applications may simply use the stan-
dard C library open(), close(), read(), and write() operations (and their
buffered counterparts) on digital evidence blobs contained within a DEB.
The open() system call is modified to return a handle to a blob within a
DEB and operations against the returned handle target the associated
digital evidence blob, rather than the DEB itself. Further, hooks in
the implementation of these system calls can identify the process name,
process number, and affected blocks, allowing transparent update of the
audit log in the DEB. This information is useful not only in identify-
ing which legacy applications accessed the DEB, but also in auditing
the correct behavior of a legacy application. For example, unauthorized
write operations against a unit of digital evidence can be readily identi-
fied from the audit log. Further, the “thoroughness” of an application
can be identified, by ensuring that it truly accesses all of the blocks
comprising a blob of digital evidence.

We have developed a prototype system for native filesystem support
for non-DEB enabled applications, based on FUSE. In our prototype,
user-level applications are used to import and export DEBs into and
out of a special DEB-aware FUSE filesystem. An import operation es-
sentially splits the DEB into component files and places these files in
a special directory, along with the DEB audit log and other metadata.
Legacy access to the blobs of digital evidence in these special directories
automatically results in updates of the audit log. For example, read
access to a blob of digital evidence results in auditing of the application
name (and process number), the time the access occurred, which por-
tions of the blob were accessed, and optionally, a hash of the executable
of the accessing application. Creation of new blobs of digital evidence
results in similar audit log entries. Exporting a DEB from the DEB-
enabled filesystem simply recreates the DEB structure from the data
stored in the corresponding directory.

We ran a number of experiments to determine the overhead of au-
tomatically auditing access to the digital evidence blobs. Tables 1 and
2 present representative performance data for use of our DEB-enabled
filesystem. Under Linux, with direct access to the DEB filesystem, over-

10

59m4sFTK v1.60 Add Evidence on Samba share, legacy
DEB-enabled FS

47m56sFTK v1.60 Add Evidence on Samba share, no legacy
DEB support

59m4sFTK v1.60 Add Evidence on Samba share, legacy
DEB-enabled FS

47m56sFTK v1.60 Add Evidence on Samba share, no legacy
DEB support

Table 1. Scalpel JPG file carve on 1GB disk image, 1.6GHz Pentium M T40p Thinkpad
with 2GB RAM.

3m29sScalpel v1.52 on ext3 FS, legacy DEB-enabled FS

3m12sScalpel v1.52 on ext3 FS, no legacy DEB support

3m29sScalpel v1.52 on ext3 FS, legacy DEB-enabled FS

3m12sScalpel v1.52 on ext3 FS, no legacy DEB support

Table 2. FTK Add Evidence processing for 8GB disk image. FTK running on 3GHz
Pentium 4 desktop with 15K SCSI disks, 2GB RAM. 8GB disk image served over 100Mb
Ethernet by 1.7GHz Pentium 4 A31p Thinkpad with / 512MB RAM.

head is approximately 9%. Over a Samba mount, FTK showed about
23% overhead, but further investigation indicated that the Windows XP
box running FTK was issuing two parallel, non-overlapping sequences
of read operations through Samba, even when application accesses were
strictly sequential. Running the Scalpel file carver under Windows over
Samba to access a DEB-enabled filesystem showed similar overhead (ap-
proximately 25%; this result is not shown in the tables). We will inves-
tigate this strange Samba behavior in the future, but note that other
developers have seen similar behavior in Windows XP.

Naturally, there are limitations in providing automatic auditing of
DEB-unaware applications. For one thing, the audit log is not as ’tidy’
as it might be if auditing were controlled by a compliant application us-
ing our DEB API. This is because audit log entries for reads (or writes)
which serve a common purpose cannot be easily grouped, since our pro-
totype does not have high-level application knowledge; it can only track
low-level file operations. Another limitation is that access to the special
DEB directories via a network share, for example, via Samba, obfuscates
the name of the application touching a blob of digital evidence. For ex-
ample, if a Windows application accesses DEB data through a Samba
share, the audit log will show smbd (the Samba daemon under Linux) as
the accessing application. Still, we believe our legacy application sup-
port is useful as an interim solution, as legacy applications are either
modified to use common DEB formats or replaced with DEB-compliant
applications.

Secure, Audited Processing of Digital Evidence: Filesystem Support for Digital Evidence Bags11

3.4 Secure Audit Logs
To further strengthen the auditing capabilities for Digital Evidence

Bags, anti-tampering facilities can be introduced for the DEB contents,
particularly the audit log. Our goal is not to prevent tampering with
the audit log or contents of a DEB, but rather to solve a slightly eas-
ier problem, to make tampering detectable. In general, secure auditing
facilities require a trusted component. This component can be either
a WORM (Write Once Read Many) drive, to which audit log entries
are appended, or a secure server, physically inaccessible to an attacker.
We discuss a few design choices. Schneier and Kelsey [5] discusses
one scheme for secure auditing, which involves an untrusted machine
U (e.g., a machine used in a digital investigation) which shares a se-
cret A0 with a trusted machine T. To append a new log entry Dj ,
U computes Kj = hash(Aj), C = Ek(Dj), Yj = hash(Yj−1;C), and
Zj = MACAj (Yj). Yj is the jth entry in a hash chain, where Y1 = 0
and MAC is a keyed hash function. Then [C, Yj , Zj] is written to the
log. The shared secret is then recomputed: Aj+1 = hash(Aj) and Aj is
destroyed. This scheme is specifically tailored to disallow log entries cre-
ated before a compromise at time t from being read by an attacker. The
idea is that the attacker is then left to delete the entire log (which will be
noticed when communication is established in the future between U and
T) or leave the log alone (and thus not know whether an entry in the log
makes note of his unauthorized access). This scheme is useful if access
to previous log entries by applications running on U aren’t needed. Note
that T can verify that the audit log on U is correct, because it possesses
A0 and can “replay” the entire log.

Snodgrass et al [4] have proposed a technique that allows read access
to the log while preventing widespread tampering with the audit log.
The scheme makes use of a trusted notary service, which accepts digital
documents, computes a hash function over the document and a secure
timestamp and then stores and returns a notary ID. This notary ID is
then stored with the log entry. To determine if the audit log is con-
sistent, a trusted party can verify that the notary IDs (and associated
timestamps) on the notary service match those in the audit log. Omis-
sions, additions, and deletions can all be noticed. This basic scheme has
the drawback of requiring a significant amount of communication with
the notary service, but audit log entries can be combined and submitted
as a single document to the notary in order to reduce communication
(at the expense of a coarser level of log validation). For DEB audit
logs, the Snodgrass approach is particularly attractive, since only a lim-
ited amount of storage is required on the trusted server. For each audit

12

log entry, a hash is computed over the text of the log entry, this hash
is submitted to the notary service, and the notary ID returned is then
stored in the DEB’s audit log. Note that the DEB’s audit log is readable
by any application, which is useful for creating reports, evaluating an
investigation, or performing tool evaluation.

4. Conclusions and Future Work
Digital forensics-aware operating system components have the po-

tential to significantly improve the investigative process, enhancing a
number of factors, from performance to consistency. In this paper, we
explored one example, examining how introducing native support for
Digital Evidence Bags improves auditing in an investigation. Digital
Evidence Bags (DEBs) mimic traditional evidence bags, by providing
a standard container for arbitrary digital evidence, with an integrated
audit log and metadata that describes the evidence and investigators.
The power of DEBs is increased substantially by providing both a stan-
dard API and native filesystem support, because both new applications
(specifically written to support DEBs) and native applications (which
use the standard Unix system calls for I/O) can take advantage of au-
tomatic auditing of forensic operations.

Our system is a work in progress and implementation is not yet com-
plete. Once the initial implementation is stable, we expect to undertake
a more thorough performance study and determine whether user level
filesystem enhancements offer sufficient performance, or whether modi-
fications to an existing filesystem, such as ext3, are actually necessary.

References

[1] Sleuthkit and Autopsy, http://www.sleuthkit.org.

[2] Forensics Toolkit (FTK), http://www.accessdata.com.

[3] “FUSE: Filesystem In User Space,” http://fuse.sourceforge.net/.

[4] R. Snodgrass, S. S. Yao, C. Colberg, “Tamper Detection in Audit Logs,” Pro-
ceedings of the 30th VLDB Conference, Toronto, 2004.

[5] B. Schneier, J, Kelsey, “Secure Audit Logs to Support Computer Forensics,”
Proceedings of ACM Transactions on Information and System Security, vol 2, no
2, May 1999.

[6] P. Turner, “Unification of Digital Evidence from Disparate Sources (Digital Evi-
dence Bags),” Proceedings of the 5th Annual Digital Forensics Research Workshop
(DFRWS 2005).

[7] V. Roussev, G. G. Richard III, “Breaking the Performance Wall: The Case for
Distributed Digital Forensics,” Proceedings of the 2004 Digital Forensics Research
Workshop (DFRWS 2004)

