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a b s t r a c t

Hashing is a fundamental tool in digital forensic analysis used both to ensure data integrity and to

efficiently identify known data objects. However, despite many years of practice, its basic use has

advanced little. Our objective is to leverage advanced hashing techniques in order to improve the

efficiency and scalability of digital forensic analysis.

Specifically, we explore the use of Bloom filters as a means to efficiently aggregate and

search hashing information. In this paper, we present md5bloomdan actual Bloom filter

manipulation tool that can be incorporated into forensic practice, along with example

uses and experimental results. We also provide a basic theoretical foundation, which

quantifies the error rates associated with the various Bloom filter uses along with a simu-

lation-based verification. We provide a probabilistic framework that allows the interpreta-

tion of direct, bitwise comparison of Bloom filters to infer similarity and abnormality. Using

the similarity interpretation, it is possible to efficiently identify versions of a known object,

whereas the notion of abnormality could aid in identifying tampered hash sets.

ª 2006 DFRWS. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The main attraction of hash functions is that they can map an

arbitrarily large sequence of bytes to a random number within

a fixed range. Furthermore, a collision-resistant hash function

will map sequences that differ even by one bit to completely

different hash values. Thus, given enough bits, we can get

a compact object representation that is unique for all practical

purposes. Another interesting aspect of the hashes is that, al-

though they uniquely represent the entire contents of a data

object, it is not possible to recover the original data by know-

ing the hash. The downside is that it is not possible to examine

the original object; however, the upside is that it is possible to

collect some information about the object without incurring

privacy concerns.

Traditionally, cryptographic hashes, such as MD5 and

SHA-1, have been used in filesystem (forensic) analysis to effi-

ciently answer yes–no questions, such as object equality. The
most important use is to compute and record the hash of a

forensic target during imaging in order to demonstrate the

integrity of the working copy. This process may also include

the storing of finer-grain hashes, typically at the block level.

Another common use is to collect hashes of known files in or-

der to filter them out during the examination process. NIST,

for example, maintains the National Software Reference

Librarydan extensive list of approximately 50 million known

file (MD5, SHA-1) hashes from common operating systems

and application packages (http://www.nsrl.nist.gov). A similar

approach is used in host-based intrusion-detection systems

(HIDS) where a clean copy of the installation is hashed and

later verified to flag any suspicious modifications. There is

no reason to believe that the traditional uses will change

any time soon with the exception of the planned transition

to stronger hash functions. In that sense, the proposed uses

of hashes should be viewed as additional tools facilitating the

forensic inquiry and are not intended as replacements.
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1.1. New scenarios

While the developed tools could be used in a variety of case-

specific scenarios, we use two generic scenariosdmultiple

target correlation and fine-grained change detectiondto moti-

vate the rest of our discussion.

1.1.1. Multiple target correlation
The goal is to pick from a set of forensic images the one(s) that

are most like (or perhaps most unlike) a particular target. This

problem comes up in a number of different variations, such as

comparing the target with previous/related cases, or deter-

mining the relationships among targets in a larger investiga-

tion. The goal is to get a high-level picture that will guide

the following in-depth inquiry. It is fairly obvious that the

already existing problems of scale in digital forensic tools

are further multiplied by the number of targets, which

explains the fact that in other forensic areas comparison

with other cases is routine and massive, whereas in digital

forensics it is the exception.

As a simple illustration, consider the following approach

that can be implemented with existing toolsdcompute the

number/fraction of common block-level MD5 hashes for every

pair of targets and use that as a measure of similarity. While

this scheme is relatively simple to implement, its resource

requirements exceed thecapacity of thetypical high-end work-

station. For example, the raw storage requirement for the

block-level MD5 hashes of a 512 GB hard drive is 16 GB. For effi-

cient access, the hashes themselves must be stored in RAM in

a hash table which is about 50% full. Thus, the total amount

of main memory needed is approximately 32 GB, whereas

a workstation has only 2–4 GB. Relying on virtual memory is

not an option due to the random access pattern of hash tables,

which rules out efficient pre-fetching from secondary storage.

Therefore, current hardware can reasonably handle the hashes

of 32–64 GB HDD in the above scenario. In other words, we need

to compress our representation at least eight times.

Another important question is the interpretation of the

resultsdhow significant it is if 50, 60, 70% of the content of

two targets is the same?

1.1.2. Object versioning detection
Often, the problem is not to discover that a target object is

different from a reference object but to identify it as a likely

version of a known object. This would be particularly useful

in dealing with composite file objects, such as executables

and office documents.

The problem with executables is that installed software is

no longer a static entity as operating systems and applications

(of various sizes and quality) update themselves frequently

over the network. Hence, a file-granularity reference hash

list will age very quickly and will have a declining recognition

rate. Therefore, it would be useful to have a tool that recog-

nizes the file as variation of a known file. Depending on the

case, this would either serve to focus attention (e.g. intrusion

investigation), or ignore it (e.g. data recovery).

Regardless of the usage scenario, the results from the pro-

posed tools are, essentially, hints to the investigator. There-

fore, they must come with statistical measures of confidence

to allow the quick identification of the most promising leads

and the filtering out noise.
1.2. Bloom filters as hash bags

What we need to address in the presented problems is a way

to store a set of hashes representing the different components

of a composite object as opposed to a single hash. For exam-

ple, hashing the individual routines of libraries or executables

would enable fine-grained detection of changes (e.g. only

a fraction of the code changes from version to version).

The problem is that storing more hashes (perhaps many

more) presents a scalability problem even for targets of modest

sizes. Therefore, we propose the use of Bloom filters as an effi-

cient way to store and query large sets of hashes. As our follow-

ing discussion will show, in addition to being able to reduce

storage requirements by an order of magnitude, a Bloom filter

can be used as a first-class object and be directly compared

with other filters in a statistically meaningful way. The upshot

is that we can build ‘big-picture’ tools that can capture relation-

ships among entire hash sets without per-member queries.

2. Related work

This section briefly presents work in three related areas: file

similarity tools, general results on Bloom filters, and applica-

tions of Bloom filters to digital forensics and security.

2.1. File similarity

Discovering similarity among files has been a topic of research

for decades. For example, Manber (1994) developed the sif tool,

which seeks to identify file similarity based on approximate

fingerprinting (essentially, selective hashing). It is primarily

suited for text files, however, and does not provide any sta-

tistical interpretation of the results. A more recent wave of

research has focused on web objects to filter out similar

search results and to use delta-encoding for object versions.

2.2. Bloom filters

Since their introduction in 1970 by Bloom, Bloom filters have

enjoyed a lot of attention both from theoreticians and practi-

tioners. Here, we briefly introduce the basic mathematical

framework we need for our own analysis and do not attempt

to exhaustively survey the literature. Our discussion and nota-

tion follow the framework presented in Fan et al. (2000) and

Mitzenmacher (2002) and the reader is referred to these publi-

cations for a more comprehensive explanation.

A Bloom filter B is a representation of a set S¼ {s1, ., sn} of n

elements from a universe (of possible values) U. The filter con-

sists of an array of m bits, initially all set to 0. As our following

discussion will show, the ratio r¼m/n is a key design element

and is usually fixed for a particular application. To represent

the set elements, the filter uses k independent hash functions

h1, ., hk, with a range {0, ., m� 1}. All hash functions are

assumed to be independent and to map elements from U

uniformly over the range of the function.

To insert an element s from S, the hash values h1(s), ., hk(s)

are computed and the corresponding k bit locations are set to

1. The same process is repeated for every element in S. Note

that setting a bit to 1 multiple times has the same effect as
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doing it once. To verify if an element x is in S, we compute

h1(x), ., hk(x) and check whether all of those bits are set to 1.

If the answer is no, then we know that x is not an element of

S, i.e., there are no false negatives. Otherwise we assume that

x is a member, although there is a distinct possibility that

we are wrong and the bits we checked were set by chance.

In other words, Bloom filters are subject to false positives;

however, the false positive rate can be quantified and con-

trolled, as shown below.

First, we calculate the probability that a specific bit is still 0,

afterall theelementsofS arehashed.Sinceour functionsareas-

sumed perfectly and uniformly random, probability is given by:

p ¼
�

1� 1
m

�kn

ze�kn=m

For a false positive to occur, each of the k locations verified

must not contain 0. For all practical purposes, it is safe to as-

sume that entries in B are independently set 0 with probability

p and to 1 with probability 1 – p (a more strict mathematical

justification can be found in Mitzenmacher, 2002). Hence, the

probability of a false positive PFP is given by:

PFP ¼
 

1�
�

1� 1
m

�kn
!k

z
�
1� e�kn=m

�k¼ ð1� pÞk

It is clear that the false positive rate depends on three factors:

the size of the filter m, the number of elements n, and the num-

ber of hash functions k, and that those can be traded off. Thus,

if the goal is to minimize the false positive rate (the usual

objective), then for fixed m and n, we can vary the number of

hash functions. Note that this optimization is not straightfor-

ward: increasing the number of hash functions increases the

chance of finding a 0 bit for a non-element; however, reducing

the number of hash functions increases the fraction of 0 bits in

the filter.

Optimizing the expression for k yields a false positive rate

of (0.6185)m/n for k ¼ ln 2ðm=nÞ. Obviously, for practical pur-

poses, k must be an integer and must be relatively small.

Returning to our motivating example from the introduction,

to achieve the minimum compression ratio of eight times

we need a ratio of r¼m/n of 16. Table 1 gives the false positive

rates for m¼ 1024 and various combination of k and r.

2.3. Applications of Bloom filters

Bloom filters have been used in a number of applications,

including hyphenation (Bloom’s original application, described

in Bloom, 1970), spell checking (Manber, 1994), database
optimization, e.g. in speeding up semi-join applications

(Valdurez and Gardarin, 1984), efficient web cache sharing

(Fan et al., 2000), peer-to-peer networks (Ledlie et al., 2002),

routing (Feng et al., 2001; Whitaker and Wetherall, 2002) and

network traffic measurement (Estan and Varghese, 2001). The

interested reader is referred to Broder and Mitzenmacher’s

(2005) survey paper on applications of Bloom filters for

a good introduction. In the remainder of this section we con-

centrate on applications of Bloom filters in computer security.

Spafford (1992) was perhaps the first person to use Bloom

filters to support computer security. The OPUS system

(Spafford, 1992) uses a Bloom filter which efficiently encodes

a wordlist containing poor password choices to help users

choose strong passwords. Bellovin and Cheswick (in prepara-

tion) present a scheme for selectively sharing data while

maintaining privacy. Through the use of encrypted Bloom

filters, they allow parties to perform searches against each

other’s document sets without revealing the specific details

of the queries. The system supports query restrictions to limit

the set of allowed queries.

Aguilera et al. (2003) discuss the use of Bloom filters to

enhance security in a network-attached disks (NADs) infra-

structure. A NAD accepts block level, reads and writes opera-

tions over a network, eliminating the need for a file server to

transfer disk blocks. The file server is therefore freed to pro-

cess only filesystem metadata, to support, for example, file

lookup and deletion operations. This greatly improves disk

bandwidth, since the file server is no longer a bottleneck. To

improve NAD security, Aguilera encrypts network traffic be-

tween the NADs and clients and uses capabilities to describe

which blocks a client may access. To prevent replay attacks,

every request is verified against a Bloom filter of recently

performed disk accesses.

Dharmapurikar et al. (2004) use Bloom filters to match

known signatures for network intrusion detection. Dharma-

purikar et al., in press describe a scheme for longest prefix

matching using Bloom filters. This work is to support content

filtering. Shanmugasundaram et al. (2004) introduce hierar-

chical Bloom filters to perform payload attribution in network

forensics. The goal is to be able to derive the set of hosts in-

volved in transmission of a payload fragment, in order to track

the propagation of malware such as worms or viruses. A hier-

archical Bloom filter (HBF) is a collection of block-based Bloom

filters (where the elements hashed for the Bloom filter contain

not only data, but a concatenated offset indicating where the

data fits in a larger data stream) with geometrically increasing

block sizes. Hierarchical Bloom filters allow determination of
Table 1 – Example of false positive rates

m¼ 1024 K

2 4 6 8 12 16

m/n 16 0.0138 0.0024 0.0009 0.0006 0.0005 0.0007

14 0.0177 0.0038 0.0018 0.0013 0.0013 0.0022

12 0.0236 0.0065 0.0037 0.0032 0.0041 0.0075

10 0.0329 0.0118 0.0085 0.0085 0.0136 0.0272

8 0.0490 0.0240 0.0216 0.0255 0.0484 0.0979

4 0.1549 0.1598 0.2201 0.3128 0.5423 0.7444
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whether two payload strings which ‘‘match’’ the Bloom filter

occur in adjacent locations in a data stream (e.g. they

appeared within the same packet) or whether they appeared

in different packets, while traditional Bloom filters would

only be able to determine where the payloads contained the

strings. In addition to the storage advantages of using Bloom

filters rather than storing raw network data, their system

enhanced privacy, since the original network data cannot be

recovered from the Bloom filters. Experimental results show

that their system is adept at tracking the propagation of

some real examples of malware.

3. Bloom filter comparison

So far we have only discussed the possibility of issuing mem-

bership queries against a Bloom filter. Relative to the custom-

ary use of hashing, the only advantage is that we can realize

an order of magnitude space savings at price of a false positive

rate of well under 1%. In this section, we present a probabilistic

argument for interpreting the direct bitwise comparison of

two Bloom filters and provide illustrative examples.

3.1. Probabilistic justification

Specifically, let n1 and n2 be the size of sets S1 and S2, respec-

tively. S1 is represented by a Bloom filter B1 with m bits using

hashing functions h1, ., hk. Similarly, S2 is represented by

Bloom filter B2 with m bits using the same set of hashing func-

tions. Note that for the comparison of two filters to be mean-

ingful, the size of both filters and the set of hash functions

used must be the same; however, the number of elements in

each filter could be different.

Under the above assumptions, the only direct observation

we can perform is to count the number of positions at which

the corresponding bit is set to 1 in both filters. We refer to

such bits as matching bits. Below, we derive the probability

that the two filters, B1 and B2, have exactly C matching bits.

Let p1 ( p2) denote the probability that a specific bit is 1 in B1

(B2) after all the elements of S1 (S2) are hashed into the Bloom

filter. Using the reasoning from the previous section, we get:

p1 ¼ 1�
�

1� 1
m

�kn1

z1� e�kn1=m

p2 ¼ 1�
�

1� 1
m

�kn2

z1� e�kn2=m

Thus, the probability that two filters have specific C bits in

common is pC
1 pC

2bpðCÞ, where bpðCÞ denotes the probability that

there are no matching bits among the rest of the m� C bits.

After accounting for all the possible ways in which the bits

can be chosen, we get:

bpðCÞ ¼Xm�C

i¼0

��
i

m�C

��
1� p1

�i�
1� p2

�i

�
�
p1

�
1� p2

�
þ p2

�
1� p1

��m�C�i
�

Therefore, the probability that two filters have any C match-

ing bits is:
pðCÞ ¼
�

C

m

��
p1p2

�CbpðCÞ
In other words, given the number of matching bits in two

filters we can calculate the probability that this happened by

chance. The threshold value below which the result is consid-

ered statistically significant is determined by the user, with

typical values (from hypothesis testing) of 0.01 or 0.05.

On the practical side, the expression for bpðCÞ is obviously

unwieldy and computationally unattractive; however, it is

fairly straightforward to obtain an approximation based on

the normal distribution.

3.2. Interpretation

Figs. 1 and 2 show families of probability density functions for

a set of realistic parameters for the m/n ratio (16, 8) and the

number of hash functions (2–6) (only probabilities greater

than 1� 10�4 are shown).

Evidently, the bell-shaped curves are indicative of a normal

distribution, which should not come as a surprise given the

basic terms for p1 and p2. More importantly, this offers the

opportunity to use available methods for efficiently comput-

ing p(C ), in the future.

The presented data provide an interesting insight into

choosing the appropriate number of hash functions. The

rationale in previous work has been that fewer functions

mean less computation, which makes perfect sense, in theory.

In practice, the different hash values are often obtained as

appropriately-sized bit subsets of the values produced by

a cryptographic function. For example, if we need 16-bit

values for the hashes, we can obtain up to eight of these by

breaking up a 128-bit MD5, which means that for up to eight

hashes the computational cost is constant. The graphs seem

to suggest that using a higher number of hashes will make it

somewhat more difficult to make confident conclusions about

direct comparisons of Bloom filters.

Using the presented examples as a starting point, let us

briefly demonstrate how the result could be used in data

forensics, in particular, in determining target similarity. For

that purpose, it is useful to have some of the actual data be-

hind the graphs to widen/narrow the scope of an investiga-

tion. Assuming that goal is to determine the images closest
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Fig. 1 – PDF for n1 [ n2 [ 128, m [ 1024.
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in binary content to a target, we could prioritize them by start-

ing with the one most likely to be similar and gradually move

away, i.e., we start with p< 0.01, then p< 0.05, 0.1, etc.

From Tables 2 and 3 we can conclude that a bit match that

has fewer than the Cmin or more than the Cmax has the corre-

sponding probability p of being random. As the [Cmin, Cmax]

range expands away from the mean, the statistical signifi-

cance of the result increases. Note that this ordering could still

be useful even if it does not carry statistical significance for all

values of p.

Another interesting observation is that it is possible for two

filters to have too few matching bits. In other words, if the ac-

tual number of matching bits is to the left of the bell in the dis-

tribution, it could be interpreted as an indication that there is

a deliberate effort to reduce the number of matching bits. For

cryptographic hash functions, it means that it is likely that

somebody has modified a hash set after it has been generated,

since any change to the source data would lead to uniform

random perturbations in the hash results that would be unde-

tectable. This result is significant because, for the first time, it

provides a statistical means to detect tampering of hash sets.

Section 5 presents some simulation results that lend support

to this conjecture.

4. Implementation: md5bloom

In this section we present a prototype stream-oriented Bloom

filter implementation called md5bloom. The ultimate intent is

to produce a well-tested open-source tool that can be incorpo-

rated into the arsenal of the digital forensic investigator either

directly, or as part of an integrated environment.
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Fig. 2 – PDF for n1 [ n2 [ 64, m [ 1024.

Table 2 – Intervals for Fig. 2 (n1 [ n2 [ 128, m [ 1024)

p k¼ 2 k¼ 4 k¼ 6

Cmin Cmax Cmin Cmax Cmin Cmax

0.25 10 18 43 58 89 110

0.10 8 20 39 61 85 116

0.05 7 21 37 63 82 118

0.01 6 25 32 67 76 125
4.1. Overview

There are three different functions associated with a Bloom

filter: creation, query evaluation, and filter comparison. In ad-

dition, those could be used on static data sets, dynamic sets, or

some combination of these. To increase compatibility with

existing hashing tools, we provide basic conversion utilities

that allow direct reuse of existing hash sets. To avoid creating

a multitude of command-line utilities, we have wrapped all

the functions into a single utility (with a multitude of options).

Conceptually, the filter management is split into front- and

back-end components. The back-end module deals with the

basic filter operationsdcreation, loading, storing, inserts,

and queriesdand is independent of the actual hash functions

used. Due to the fact that it handles membership queries we

refer to it as a bloom server (or daemon). The front-end (the

bloom client) is the one responsible for feeding the server

with the desired hash sets and for performing the queries.

Depending on the usage scenario, the client and the server

could be running in the same process, or in separate processes

communicating over the network. In a large-scale scenario,

a single client may query multiple servers and a single server

can process simultaneous requests from multiple clients.

Central to the operation of the filter is the generation of

hash function values. Our scheme piggybacks on the ubiqui-

tous MD5 function to produce the necessary hashes, although

it would be straightforward to use any cryptographic function,

such as the ones in the SHA family. Despite the recent up-

heaval about the possibility of MD5 being vulnerable to attack,

MD5 is very suitable for our purposes for a number of reasons:

we do not use it to validate data integrity of individual objects

but to compare groups of objects; the results are always

treated as a hint; MD5 has much lower computational costs

than stronger hash functions.

Recall that, given an arbitrary sequence of bytes, the MD5

function returns 128 bits: hMD5¼MD5(object). Since MD5 is as-

sumed to be a collision-resistant function, any individual bit

of the hash value can be viewed as an independent random

variable and, by extension, any subset of the 128 hash bits

can be selected to produce a value within a desired range.

Let the bits in hMD5 be numbered 0.127. We use the

notation hd1 :d2
and the term subhash to denote the selection

of a continuous of bits numbered d1 through d2, inclusively.

Thus, hMD5 ¼ h0:127 and can also be expressed as the concate-

nation of subhashes, e.g.:

hMD5 ¼ h0:15h16:31h32:47h48:63h64:79h80:95h96:111h112:127

For convenience, we assume that the size of the filter m is

a power of two: m¼ 2l. We need a selection of k� l bits from

the original hash and one straightforward way to achieve is

Table 3 – Intervals for Fig. 2 (n1 [ n2 [ 64, m [ 1024)

p k¼ 2 k¼ 4 k¼ 6

Cmin Cmax Cmin Cmax Cmin Cmax

0.25 42 57 146 172 269 301

0.10 39 61 140 178 262 309

0.05 37 63 134 180 258 314

0.01 32 68 127 187 248 322
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as by follows:	
h0:l�1;hl:2l�1;.;hðk�1Þl:kl�1



For practical purposes, however, it is more convenient to

first breakup the hash into byte-aligned pieces and then

mask out the unneeded bits. We use 1-byte alignment if

l � 8, 2-byte alignment if 8 < l � 16, and 4-byte alignments if

17 < l � 32 (232 is currently the maximum supported filter

size). After the breakup, the extra subhash bits are masked

out, starting with the most significant one first.

4.2. Filter creation

As already mentioned, the creation of the filter is handled by

the server module. There are three alternative options for

creating the filterdfrom a byte stream, from existing MD5

hashes, and from client hashes. Below, we provide a brief

description of the options of our tool. For brevity, we omit

the name of our tooldmd5bloomdfrom the command lines

and present only the options:

–genstream ClD CkD CrD Cblock_sizeD [–daemon port]

The –genstream version reads from the standard input

blocks of the given size, hashes them, and inserts them into

a filter with the given parameters. When the filter reaches

its capacity (as determined by the m/n ratio) a new one is

started. The default output behavior is to send the binary con-

tent of the full filter to the standard output, preceded by

a small header describing its basic parameters. If the –daemon

option is specified, the filter is kept in memory and the module

acts as a server daemon accepting request on the given port.

Example:

md5bloom –genstream 10 4 8 512 \

–daemon 2024

The process will create the filter m¼ 210, k¼ 4, m/n� 8, and

will hash stdin every 512 bytes. Resulting filters will stay in

memory and will be available for queries on port 2024.

–genmd5 ClD CkD CrD [–daemon port]

The –genmd5 version reads from the standard input

a stream of hexadecimal MD5 text strings (one per line) and

inserts them into a filter with the specified parameters. As be-

fore, the output/server behavior is controlled by the –daemon

option.

–genclient ClD CkD CrD [–daemon] CportD

The –genclient version creates an empty filter with the given

parameters and awaits a connection from a client on the given

port. Since the module must act as a server, the –daemon

option only affects the output.

–load [–daemon] CportD

The –load option instructs the module to load a binary

stored version of the filter from standard input. The server
option is implied so –daemon controls the output only. Note

that outputting to a stream allows the addition of new

elements to an existing filter set.

4.3. Filter query/comparison

–clientstream ChostD CportD Cblock_sizeD

The client reads in a stream of data from standard input,

generates MD5 hashes for every block of the given size, and

passes on the result to the server on the specified host and

port to be placed in a filter.

–clientmd5 ChostD CportD

The same as the previous option except for that the hashes

are not generated from source data but are read from standard

input (hexadecimal, one per line).

–querystream ChostD CportD Cblock_sizeD

The client reads in a stream of data from standard input,

generates MD5 hashes for every block of the given size, and

sends them as queries to the specified server host and port.

Hashes that are found in the filter are printed to standard

output.

–querymd5 ChostD CportD

The same as the previous option except for that the hashes

are not generated from source data but are read from standard

input (hexadecimal, one per line).

–diff Cfile_1D Cfile_2D

Performs a bitwise comparison of two filters and prints to

standard output the number of common bits, the number of

set (to 1) bits in the first filter, and the number of set bits in

the second one.

–print CfileD

Pretty prints the header information with all the parame-

ters of the filter stored in the file.

5. Experiments

In this section we describe some initial experiments we

performed to validate our work and to ensure that the proba-

bilistic framework presented earlier does indeed perform as

expected. We are still at an early stage of the development

cycle (alpha) and are not ready at the time of this writing to

present performance measurement, which are obviously

very important to establish the viability of the proposed tool.

5.1. MD5 false positive rate validation

Since our entire construct hinges on the behavior of the MD5

function, our first order of business is to perform a few sanity
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checks and to observe the actual false positive rate. To observe

the latter, we used independently generated streams of data

from the Linux /dev/random device. The essential idea is

that, if the filter is filled with hashes from random blocks

and those are later compared with hashes of other random

blocks, then any positives are the result of random collisions.

The difference between the predicted rate and the observed is

essential to understand the actual behavior of our tools.

The following command creates a filter using blocks from

the random device:

dd –if¼/dev/random �count¼CnD �cbs 512 j \
md5bloom –genstream ClD CkD CrD 512 –daemon \

1234

where n, l, k, and r vary for the different filter configurations

tested. The corresponding client looks as follows:

dd –if¼/dev/random �count¼CND �cbs 512 j \
md5bloom –querystream ChostD 1234 512

By default, the client outputs the hashes that have been

recognized by the server so the false positive rate is given by

the ratio of the number of recognized elements and the overall

number of elements N (note that N [ n to produce a good es-

timate). The long-term averages over multiple runs produced

results that closely match the predicted ones from Table 1. For

the sake of brevity and to avoid repetition, we omit the actual

numbers.

Another sanity check is to verify that, given the same

input, the recognition rate will be 100%. That was trivially

accomplished by creating a random file and feeding it both

to the client and the server. (The randomness here is optional

and it is only to ensure that we are not testing against files

with large blocks of zeros.)

5.2. Matching bit ratio versus PDF

Let us call the ratio of matching bits to the average number of

set (to 1) bits in the filters a matching bit ratio (MBR). We can

now answer the question from the introduction of the paperd

if the MBR is 50, 60, 70, ., %, is that a statistically significant

result? In other words, at what point the chance of this

happening becomes very small.
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Since it is difficult to find ‘in the wild’ files with such spe-

cific MBRs, we performed a controlled experiment, in which

file overlap was known ahead of time. Using the Linux random

device, we generated two files of 100 MD5 hashes with no

overlap and compared them. Then, we mixed 95% of the first

file with 5% of the second (95/5 mix) and compared the result-

ing mix to the second file. Then, we compared a 90/10 mix to

the second file and so on until we reached 0/100 mix (second

file compared to itself). Note that since we directly use the

MD5 hash records, there is a linear relationship between the

number of matching bits and the number of overlapping re-

cords. The results are presented in Fig. 3 with the correspond-

ing probability density function shown in Fig. 4.

Taken together, the two graphs tell the following storyd

the Bloom filters (with the chosen parameters) of two com-

pletely random files are expected to have about 33% matching

bits. As the matching bits increase beyond 150, which corre-

spond to 45% bits in common the p-value drops below

0.0001. Note that the 45% matching bits in the filter is achieved

with only 20% overlap in the original hash files.

5.3. Detecting hash tampering

It is also possible to derive the MBR from the previous section

analytically using the formula for the expected magnitude of

the matching bits (Broder and Mitzenmacher, 2005). Yet, we

decided to obtain simulation results to better understand

the behavior of the system and, in particular, to verify our con-

jecture that the only way to observe a matching bits number to

the left of the bell curve is to deliberately introduce non-

randomness. Indeed, over the course of a 1000 runs of the exper-

iment, the minimum number of matching bits C we recorded

was 89dwhich fits comfortably under the bell of the curve

(Fig. 4).

The other part of the experiment was to experimentally

demonstrate a lower C. Clearly, achieving this by tampering

the object data is tantamount to breaking MD5, which is still

an open problem. Instead, we used simple techniques to

gradually eliminate randomness from the MD hashes.

We tried two approachesdincreasing the number of bits

set to 1 and increasing the number of bits set to 0. One simple

way to achieve these goals is to (globally) replace digits from

the hexadecimal MD5 representation with ‘F’ and ‘0’, respec-

tively. This has the effect of introducing more repeat bit
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patterns, which results in fewer bits set and less randomness

in the filter. Fig. 5 summarizes the results.

Correlating Figs. 4 and 5 shows that globally replacing

about three to four digits in either case drives the expected

overlap to the left of the curve: for C< 85 there is>99% chance

that this is not random. There is a mild suggestion that intro-

ducing more of 1 bits (replace w/‘F’) is more easily detectable,

which could be explained by the fact that 0 bits outnumber 1

bits 2-to-1 in these specific filters. More generally, the number

of ones should not exceed the number of zeros in a properly

constructed filter.

5.4. Detecting object versioning

In the introductory discussion, we pointed out that fine-

grained hashing based on the logical components of an object

can be a generic way to recognize unknown versions of known

objects. In our proposed scheme, that would be accomplished

by decomposing the object into logical modules, hashing ev-

ery module, and inserting the resulting hashes into a Bloom

filter, which becomes the hash representation of the object.

At verification time, if the old and the new versions are

identical, so will be their filter representation. Otherwise,

a comparison of the number of matching bits versus the

probability density function as discussed in Section 3.2 can

provide a (potentially strong) hint that the new version is,

indeed, a close relative of the old one.

To perform an initial test of the feasibility of this approach,

we picked at random three pairs of Linux libraries with names

that suggested version relationships. For the test, we used

objdump to extract the content of the .text sections with all

the library functions, extracted the machine code from the

dump, generated the MD5 hashes for each individual function,

and filtered out all duplicates (Table 4).

For each of the pairs, we created one or two versions of the

Bloom filter representation by varying m. Based on our goals for

a realistic m/n ratio between 8 and 16, we fixed the number of

hash function k¼ 4, which yields false positive rates between

0.24 and 2.4% (Table 1). Based on initial observations, we also

experimented with m/n ratio values of 4 or less. Normally,

such Bloom filters would give positive rates that are too large

to be used in a traditional way (>16% for k¼ 4); however, for

hash set comparisons, they appear to be a reasonable choice.

The results are summarized in Table 5, where the notation

is as follows: the column headers identify which libraries were
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compared in the experiment, e.g. ‘fs’ means that fs1 and fs2

were compared. The rows for each experiment contain: the

size of the filters used (m); the number of elements in the first

library (n1); the number of elements in the second library (n2),

m/n ratio, where n¼ (n1þ n2)/2; the number of common ele-

ments (S1 X S2); the number of matching bits in the filter com-

parison (C ); and the p-value with which we identify the

libraries as versions of each other. Recall that p gives the prob-

ability that the matching bits happened randomly so a value

<0.01 means that there is less than 1% chance of this happen-

ing by chance.

We believe that the results strongly support our hypothesis

that versions of known objects can, indeed, be identified by

comparing their Bloom filter representations. Furthermore,

the solution is very efficient both in terms of space and time

requirements. For example, the first column shows that we

can represent about 50 elements with 256 bits (w5 bits per

element) and expect to reliably a version which modifies ap-

proximately 2/3 of them. However, a version which contains

about 1/4 modified elements can be discovered using only

three bits per element (last column). The counting of the

matching bits is straightforward and is naturally paralleliz-

able, which is increasingly important with emerging multi-

core processors and hardware multi-threading.

6. Conclusions

In this paper, we motivated and justified the use of Bloom

filters as natural extension of existing filesystem hashing

techniques with application to correlation of multiple targets

and identification of object versioning. Specifically, our work

makes the following contributions.

We built a general purpose stream-oriented tool, called

md5bloom that supports the management of Bloom filters. In

Table 4 – List of tested libraries

Name Reference Functions

liboskit_fsnamespace.a fs1 54

liboskit_fsnamespace_r.a fs2 54

liboskit_posix.a posix1 103

liboskit_posix_r.a posix2 127

libpng10.a png1 303

libpng12.a png2 329

Table 5 – Library version identification

fs fs posix posix png

m 256 512 512 1024 1024

n1 54 54 103 103 303

n2 54 54 127 127 329

m/n 4.74 9.48 4.45 8.90 3.24

S1 X S2 19 19 53 53 239

C 101 98 218 230 657

p <0.015 <0.001 <0.001 <0.001 <0.01



d i g i t a l i n v e s t i g a t i o n 3 S ( 2 0 0 6 ) S 8 2 – S 9 0S90
addition to creating Bloom filters from source data, it allows

for the direct use of existing hash sets to create Bloom filters.

We present an initial probabilistic framework that justifies

the direct, bitwise comparison of Bloom filters and provides

a means to interpret the results.

We provide simulation results that both validate our

framework and demonstrate that it is possible to identify

tampering with a hash set by comparing it to a random one.

We present initial tests on system libraries that demon-

strate the practicality of identifying object versioning through

Bloom filters. In particular, the result suggests that it is possi-

ble to use filters with relatively high false positive rates (>15%)

and low number of bits per element (3–5) and still identify

object versioning with high degree of confidence.

7. Future work

We expect to quickly beta-test md5bloom and release it as an

open-source tool to be used by practitioners. We also plan to

add support for other types of Bloom filters, such as counting

and hierarchical (Shanmugasundaram et al., 2004).

We plan to perform large-scale testing with complete

installations (e.g. compare different versions of Linux) to gain

more practical insight.

On the theoretical side, we would like to obtain a more

computationally attractive expression for the PDF of the

matching bits. We expect that a normal distribution approxi-

mation will be a reasonable approach.

We plan to investigate the utility of the presented approach

to security problems, such as intrusion prevention, detection,

and mitigation.
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