
H. Gellersen et al., ECSCW 2005, Proceedings of the Ninth European Conference on Computer-

Supported Cooperative Work, 18-22 September 2005, Paris, France, 45-64.

Supporting High Coupling and User-
Interface Flexibility

Vassil Roussev
Department of Computer Science
University of New Orleans
vassil@cs.uno.edu

Prasun Dewan
Department of Computer Science
University of North Carolina
dewan@cs.unc.edu

Abstract. Collaborative systems that automate the sharing of programmer-defined user
interfaces offer limited coupling flexibility, typically forcing all users of an application to
share all aspects of the user interfaces. Those that automatically support high coupling
flexibility are tied to a narrow set of predefined user-interfaces. We have developed a
framework that provides high-level and flexible coupling support for arbitrary,
programmer-defined user interfaces. The framework refines an abstract layered model of
collaboration with structured application layers and automatic acquisition, transformation,
and processing of updates. It has been used to easily provide flexible coupling in
complex, existing single-user software and shown to support all known ways to share
user-interfaces. Coupling flexibility comes at the cost of a small amount of additional
programming. We have carefully crafted the framework to ensure that this overhead is
proportional to the degree of coupling flexibility desired.

1. Introduction
Collaborative environments today (such as NetMeeting, Webex, and LiveMeeting)
typically have two components: a shared-window application-sharing system that
allows sharing of collaboration-unaware applications and a set of applications,
such as a whiteboard and a distributed presentation tool, that are collaboration
aware. The reason for providing the shared-window system is that the cost of
implementing collaboration-aware applications is high. The reason for providing a
special set of collaboration-aware applications is that a shared window system
provides a very tightly coupled and inflexible model of collaboration in which
What You See Is What I See (WYSIWIS). Collaboration-aware applications
relax/extend this model in several ways. This is illustrated by the NetMeeting,
LiveMeeting, and Webex whiteboards. They support sharing of a subset of the

user-interface objects: for example, Figure 1(b) shows that the line drawn by user
1 is shared but the line-selection mode used to draw the line is not. Moreover,
they support both synchronous and asynchronous communication of changes to
shared objects. For example, text insertions are sent as they are made. On the
other hand, as a user draws a new line, the other users get no feedback (Figure 1
(a)). It is only when the line is completed that others user see it (Figure 1 (b)).

From a software-engineering point of view, it is important for the application-
sharing system and collaboration-aware applications to share a single set of high-
level abstractions for coupling user interfaces. However, in current systems, high-
level coupling abstractions limit either the coupling flexibility or the user-
interface flexibility. Those that provide high user-interface flexibility, like
NetMeeting, restrict the coupling to near-WYSIWIS sharing. Those that provide
high coupling flexibility restrict the user-interface to a textual display. Thus, none
of these systems can support the variety of coupling modes implemented in
collaboration-aware graphical applications supporting loose coupling. These
include whiteboards, MS PowerPoint presentation systems (e.g., Webex ,
LiveMeeting), structured idea-finding systems (Prante 2002), and even table-top
and large-display applications (Tse 2004). As a result, all of these applications
must be implemented manually. While this has been an open problem for more
than a decade, it remains an active issue because of the overhead of implementing
collaborative applications. In fact, in the CSCW 2004 conference, the developers’
workshop, “Making application-sharing easy,” was devoted to the issue of how to
relax the coupling of current near-WYSIWIS application-sharing systems.

Figure 1 Non-WYSIWIS coupling in NetMeeting Whiteboard

We have addressed this question by developing a high-level framework that
supports both high coupling and user-interface flexibility. Section 2 describes the
research work related to our own, Section 3 and 4 discuss the components of our
framework, Section 5 details our experiences with coupling complex, existing,
single-user code, and Section 6 presents conclusions and future directions.

2. Related Work
The coupling between two user-interfaces defines which parts of them are shared
and when a change to a shared part in one user-interface is reflected in the other.

Multiple coupling policies have been developed for two main reasons. First, users
should be allowed to use a coupling policy that reflects their level of
collaboration. For example, two users may wish to see the same or different
visualization of some data depending on whether their discussion is about the
visualization or the data. Second, the system should be allowed to choose a level
of coupling that gives the desired quality of service. For example, NetMeeting and
other commercial collaboration-aware applications do not support immediate or
synchronous remote updates to a graphical object being dragged (Figure 1)
probably because of jitter problems in a wide-area network, while some systems
that address these problem do support incremental graphical updates (Dyck 2004).

The relationship between user-interface and coupling technology is
demonstrated by shared window/screen systems, which share the user interface
(UI) by intercepting the I/O stream of a collaboration-unaware application. They
collect the input from different users into the single I/O stream expected by the
application, and replicate the single application output stream for each user. The
result is that each user sees the same sequence of outputs. The degree of coupling,
then, depends on the abstraction level of the output. In a screen-sharing system,
the entire screen is replicated, while in a shared window system, only the shared
windows are replicated. Stream-based sharing of this form is formalized in Chung
and Dewan (2001), which provides sharing of an abstract I/O stream, to which the
specific I/O stream of a system/application must be translated.

Stream-based sharing does not support sharing at multiple degrees of
abstraction such as the ability to share either the same or different visualization of
some data. The PAC (Coutaz 1987) and MVC (Krasner 1988) architectural
frameworks provide a way to formally describe these two levels of sharing. MVC,
in particular, divides an interactive application into a Model, a View, and a
Controller, which address semantics, output, and input, respectively, of the
application. The controller invokes methods in the model to inform it of input;
model sends notifications to all of its views of any changes to its state. Different
views can respond to these notifications in independent ways, thereby creating
different visualizations of the model. The MVC framework is often simplified in
later systems to the Model/View framework, in which the view and controller are
combined into one object because of the many dependencies among them in
editor-based applications, where input consists of editing output.

Some collaborative systems based on the Model/View framework provide
sharing of either component. Model sharing is provided by allowing the views to
be created on the displays of different workstations. View sharing is provided by
creating each view as a physical replica of a single logically shared object.
Different systems provide different mechanisms to keep a model consistent with
its views and the different view replicas consistent with each other. Rendezvous
and Weasel (Graham 1996) use declarative constraints, GroupKit (Greenberg
1994) uses table updates, DISCIPLE (Wang 1999) uses JavaBean events, JViews

(Grundy 1998) uses a more general ChangeDescription object, and Colab
(Stefik 1987) supports broadcast methods that are invoked on all replicas. Some
of these systems, such as Rendezvous, centralize the model while others, such as
GroupKit and JAMM (Begole 1999), replicate it, while addressing display
synchronization, externalities, and other replication issues.

These systems allow arbitrary user-interfaces to be created by the programmer-
defined view objects. However, their support for coupling is limited in several
ways. They cannot support fine-grained sharing of model or view objects. For
example, they cannot support the RTCAL collaborative calendar application (Sarin
1985), which allows sharing of public, but not private, appointments of a user.
Moreover, they do not provide automatic support for asynchronous sharing of
shared objects. Most of the above systems support only synchronous sharing. The
exception is JViews, which also supports asynchronous sharing by logging events,
but requires users to manually flush the logs and resolve any inconsistencies.
Furthermore, they do not allow users to dynamically change between model and
view sharing. The level of sharing is fixed at compile time based on whether a
shared or normal view object is used. Finally, they do not support sharing at a
lower-level of abstraction than views, in particular screen or window sharing.

The design of Suite (Dewan 1992) shows that coupling inflexibility of other
(concrete) collaborative systems can be addressed if the system coupling the UIs
is also the one that automatically generates them. This knowledge is used to
support fine-grained, synchronous, asynchronous, and multi-layer sharing
policies, and dynamic changes to them. The problem is that these policies apply
only to the limited set of user interfaces generated by the system, which does not
include graphical interfaces such as a whiteboard.

One way to achieve the coupling flexibility of Suite and UI flexibility of
systems supporting programmer-defined views is to provide an architecture for
easily adding new coupling implementations. This approach has been taken in
several systems such as DISCIPLE, AMF-C (Tarpin-Bernard 1998), and JViews.
While it is important to offer extendibility/composability, it is also crucial to
recognize the commonality in the coupling policies supported by existing
software and provide high-level support for these policies. The experience with
Suite has shown the benefit of providing high-level support for a comprehensive
set of coupling policies. Fifteen years after it was developed, as far as we know,
no new coupling policy has been identified for the (textual) UI it supports.

The layered architecture model of Dewan (1998) provides a way to reason
about multiple levels of sharing for arbitrary user-interfaces. It assumes that input
and output are processed by a series of layers, where each layer abstracts the I/O
received by the lower layer. An example of such a series of layers is the screen,
window, view and model layers. The layers communicate interaction events to
implement the user-interface of the application. A collaborative architecture can

be modeled by a (possibly empty) series of shared layers followed by a series of
“replicated” layers that communicate coupling events to share their state.

The “replicas” can diverge by sharing a subset of the objects managed by them
and queuing changes to shared objects before transmitting them to peer replicas.
This model is abstract in that it does not describe the exact form of
communication across layers. Thus, it does not provide a system that automates
multiple levels of sharing, serving only to define them informally.

Layer 1

Layer 2

…

Layer n

User A

Layer 1

Layer 2

…

Layer n

User B

(Unspecified)

Layer 1

Layer 2

…

Layer n

User A

Layer 1

Layer 2

…

Layer n

User B

(Unspecified)

Figure 2 Layered model

Our framework combines and extends the various approaches/concepts
described above. It defines an open, composable architecture for implementing
coupling that can be considered as a concrete, automatable version of the abstract
layer architecture above. Based on user-defined descriptions of application
layering, it supports sharing of any subset of layers. More generally, it provides
high-level support for a set of coupling policies that is comprehensive in that it
covers all known coupling policies. Like Suite, it is able to support dynamic
changes to the coupling policy.

3. Overview
To make our discussion concrete, we first consider the implementation of a

multi-user Outline application in Java from the point of view of the application
programmer. Our starting point is a single-user model/view implementation where
the model has the recursive structure (of subsections) shown on Figure 3 and the
view is the tree interface on Figure 4.

To add collaboration support using our infrastructure, the developer must: a)
register the roots of the shared object structure (Outline/OutlineView); b)
provide specifications so that the rest of the shared object structure (title, sections,
and subsections) can be extracted automatically; c) provide update notifications of
user updates to the outline; and d) provide layer descriptions to enable dynamic
transition between model and view coupling. Depending on the coding
conventions used and the desired degree of coupling, steps b), c), and d) are
optional. For the rest of this section, we briefly present each step of the process.

public class Outline {
 String getTitle();
 void setTitle(String title);
 void insertSection(int i,Section);
 void removeSection(int);
 Section getSection(int);
 id getSection(int,Section); vo
in

} t getSectionCount();

Figure 3 Example Outline object definition Figure 4 Example Outline user interface

3.1 Registration and Initialization

Figure 5 illustrates the necessary additions to the startup code of the original
application. The un-highlighted code is single-user code that would have to be
written even if no coupling was desired. It creates an outline model and view,
informs the view about the model, and displays the application window.

public static void main(String[] argv) {
SystemBoot.initAll(argv);
// --- Single-user initialization
Outline outline = initOutline();
JFrame outlineView = initOutlineView(outline);
outlineView.setVisible(true);
// ---
ColabJMenu.addColabMenu(outlineView);
PropertyRegistrar.register(outline, "Outline");
PropertyRegistrar.register(outlineView, "OutlineView");
ObjectBrowser.addRootObject(outline);
ObjectBrowser.setVisible(true);

}

Figure 5 Initialization code for example application

The highlighted code is the added collaboration-aware code, which is external
to the model and view. It adds a special collaboration menu (Figure 6) to the
window that allows users to execute collaboration-aware commands to transmit
pending updates. It registers the outline model and view with the infrastructure,
which uses pattern specifications to decompose these objects, and assigns unique
global ids to the tree of objects rooted by them. Finally, it instantiates an object
browser (Figure 7) to enable flexible coupling specification by the user.

The object browser is an application-independent user interface component
through which users control the sharing of application objects. The idea is to have
a unified collaboration control interface in order to save development effort and to
allow users to transfer collaboration experience from one application to another.
The browser shows, in a dedicated window, a tree representation of the structural
hierarchy of the shared objects registered with the infrastructure. To change the
sharing, a user navigates to the desired object and selects a specific sharing policy
from a list of predefined ones, or customize one on the fly (Section 3.5).

Figure 6 Collaboration menu attached to
an application

Figure 7 Object browser with policy
selection pop-up menu

3.2 Object Structure Specification

To present the GUI on Figure 7, and to enable fine-grained coupling in which
different layer components are coupled differently, we must derive the logical
structure of the shared objects. Ideally, this should be accomplished
automatically, as it is the case in Suite. However, Suite assumes that the entities
are defined by concrete data types such as records and arrays, which expose their
structure. Our framework assumes entities are encapsulated objects and cannot
automatically decompose an object without making any assumptions about it.

Our approach to address this problem is to build on the fact that code naming
conventions used to convey information to other developers can also be used by
our framework to decompose an object. We support a language for describing
object components or properties based on the relationships among the signatures
of methods used to access them. This approach is more fully motivated and
described in Roussev (2000); Roussev (2003)—here describe it “by example” to
give a concrete idea of how it is used, based on Outline object of Figure 3.

The properties of instances of this type are defined by two definitions. The first
definition states that a simple property <PropName> of type <Type> is defined
whenever two property methods, “getter” and “setter” can be found such that the
constraints on their signatures described above are met:

type = s
methods

imple

 getter = <Type> get<PropName>()
 se e
name = <PropName>

tter = void s t<PropName>(<Type>)

Similarly, the following definition describes a variable-sized sequence
property, <PropName>, whose elements are of type <ElemType>:

type sequence =
methods
 insert = void insert<PropName>(int,<ElemType>)
 remove = void remove<PropName>(int)
 lookup = <ElemType> get<PropName>(int)
 set = void set<PropName>(int, <ElemType>)
 coun
name = <PropName>

t = int get<PropName>Count()

Together, these two definitions describe the two properties in the outline
example—a simple property named “Title” and a sequence property named
“Section”. In a property definition, free variables such as <PropName>,
<ElemType>, and <Type> must be unified to the same values in all uses. These
free variables allow property definitions to describe a whole family of interfaces.
In fact, an interface is a property definition with no free variables. The overhead
of creating property definitions is amortized over the family of classes/interfaces
that use the conventions encoded by them. For example, the JavaBeans
convention definition is shared by all object classes that use them.

The property-description language comes with a Java-based introspection
mechanism to dynamically determine the properties of an object and invoke the
methods to read/write them. For example, it provides the following method to
determine the properties found:

Property[] mp = Introspector.getProperties(className, specs);

It also provides a way to access the methods for handling a property:
Method getter = property.getMethod(“getter”);

The Java Method class allows runtime invocation of its instance:
getter.invoke(target, null);

In our specific example, the developer would not have to give any
specifications as our implementation by default supports JavaBeans properties, as
well as sequence and table properties. Depending on the coding style, additional
specs may be necessary for other applications. We should point out that the
definitions are given in separate XML files and are reusable across applications.

3.3. Update Notification

In order to provide automatic coupling, the infrastructure must learn of user
updates to the shared structures. Ideally, the application should notify the
infrastructure of each incremental update. However, this may require more effort
than the developer is willing to invest and/or more than the user actually needs.
Therefore, we give a range of sharing options and specify the implementation
effort required for each one of them.

Asynchronous fine-grained diff-based sharing can be achieved without any
notification support from the Outline application. We have developed a general
property-based diffing algorithm (Roussev 2003) that can derive the fine-grained
updates from successive snapshots of the object’s state. The properties used in the
Outline are supported by default so no additional effort is required. Thus, upon a
user command (or timer expiration) the infrastructure performs diffing and
communicates any discovered updates. For applications using other property
types, specific diff operations may need to be defined as separate methods that
can be shared across applications using the corresponding property type.

Incremental, synchronous sharing can be achieved by announcing update
events. This can be accomplished in one of two ways—by directly using the
infrastructure-defined event model, or by translating existing application events
into the model. The first option requires an extra line of code at the end of each

method of the shared object that modifies the state (such as setTitle,
insertSection, removeSection, and setSection). For example,

public void setTitle(String title) {
 …
Coupler.dispatch(new PropertyOperation(this.getGID(),“title”, “setter”,newObject[] {title}));
}
The second option may be more attractive for component-based applications

that already have their own events. Our implementation provides two general-
purpose reusable event adapters for translating AWT and JavaBeans events.

Delayed semi-synchronous sharing that communicates changes when they
reach a certain completion or correctness level requires synchronization events to
be transmitted (Sections 4.2-4.3). A synchronization event is a meta-event that
labels a preceding update as having certain level of completion and/or correctness.
For example, typing a character in the title would trigger an update notification,
while pressing <Tab> might indicate that the change is complete.

In practice, model-level objects (i.e., Outline) must be aware of the level of
correctness of each change, as it is their job to ensure it. Hence, they only need to
pass along this information by tagging the updates as Parsed, or Validated. In
terms of implementation, this corresponds to one more line of code for each
modifier method. Indicating a Complete editing operation for the Outline is
slightly more complicated—in our prototype it took an additional 15 lines of code.

3.4 Application Layering Specification

Recall that, to increase coupling flexibility, Suite provides sharing at two levels
(model and view) that can be dynamically switched at run-time. This is possible
because the system builds the UI and knows the precise application layering.
However, in our model, we support arbitrary layers and thus need an alternative
mechanism—developer-provided layer descriptions. To illustrate, consider the
layer decomposition for the Outline application shown on Figure 8 and its
corresponding (partial) XML description given on Figure 9.

class Outline {
String getTitle();
void setTitle(String title);
void insertSection(int i, Section s);
void removeSection(int i);
Section getSection(int i);
void setSection(int i, Section s);
int getSectionCount();

}

Window

Appearance

View

Model

class Outline {
String getTitle();
void setTitle(String title);
void insertSection(int i, Section s);
void removeSection(int i);
Section getSection(int i);
void setSection(int i, Section s);
int getSectionCount();

}

Window

Appearance

View

Model

Figure 8 Layer decomposition for Outline application

At the lowest level is the window layer, which consists of the single application
window through which all objects are edited. The view layer consists of the
window’s menu-bar and a JTree object through which the outline object is

edited. The appearance layer consists of the elements of the application window
that do not affect the state of the outline, such as the scrollbar. In this example, a
user action may trigger one of two sequences of events. If the user performs an
action that modifies the outline, the process triggers three causally related
notifications at the window, view, and model layers, respectively. If a user action
concerns only the appearance layer (e.g., scrolling), it triggers a sequence of two
causally related notifications—at the window and appearance layers.

<object class = "outline.Outline">
<layer name="model"><ALL/></layer>

</object>
<object class = "outline.Section">
<layer name="model"><ALL/></layer>

</object>
<object class = "java.swing.JTree">
<layer name="view"><ALL/></layer>

</object>
…

<layer_dependencies>
<window>
<view>
<model/>

</view>
<appearance/>

</window>
</layer_dependencies>

<object class = "outline.Outline">
<layer name="model"><ALL/></layer>

</object>
<object class = "outline.Section">
<layer name="model"><ALL/></layer>

</object>
<object class = "java.swing.JTree">
<layer name="view"><ALL/></layer>

</object>
…

<layer_dependencies>
<window>
<view>
<model/>

</view>
<appearance/>

</window>
</layer_dependencies>

Figure 9 Layer definitions for Outline application

Thus, if window sharing is specified, all notifications from other layers will be
suppressed. If view sharing is specified, then model and window notifications will
be suppressed. Similarly, if model sharing is specified, window/view events are
suppressed. Since the appearance layer is independent of both the model and view
layers, its sharing can be turned on/off independently of the model and the view.

3.5. Coupling Specification

To complete the overview, we present the coupling control interface seen by
the user. Using the object browser (Figure 7), the user selects a layer, an object, or
an object property and then selects the desired policy from a pop-up menu. This is
either a named (predefined) policy or a custom one built on the fly. The drop-
down list in the browser allows different policies for the interaction with different
users to be selected. The *Group* value shown is a default for all participants.

Figure 10 Coupling policy editor

Policy customization is invoked by selecting ‘Edit’ from the pop-up menu,
which brings up the policy editor (Figure 10). A detailed explanation of the

different policy parameters is given Section 4.2 but the essential idea is to define
the conditions under which updates are transmitted/received. The policy shown on
the figure is asynchronous fine-grained diff-based sharing: updates are obtained
using diffing, sent whenever the user chooses to commit them and are installed as
soon as they are received. After editing is complete, the user has the choice of
Apply-ing it to the target object/property, or Save-ing it as a named policy.

In summary, depending on the desired level of support, a developer needs 20-
45 lines of application code and several XML specifications to incorporate all
features of the synchronous, event-based sharing for the Outline application.
Programmers can incrementally add the code and learn the concepts behind it as
more coupling flexibility is required. Users will be able to immediately take
advantage of the new features using the same control interface.

4. Framework
4.1. Update Events

The layered model leaves unspecified the communication of (1) interaction events
that go up and down layers and (2) coupling events that go across layers. The
interaction events should be left unspecified in a collaboration framework to
accommodate arbitrary programmer-defined UI. However, automating replica
coupling implies making some assumptions about the coupling events.

The interaction events supported by the Model/View framework provide a
basis for designing and understanding coupling events. The framework supports
an asymmetric communication model, where the communications up and down
are different in nature. A view informs the higher-level model layer about an input
event by directly invoking a model-specific method in it. On the other hand, a
model informs its lower-level view layers about state changes by sending view-
independent notifications to them. A view processes the notification by retrieving
the state of the model in which it is interested, and calling a view-specific method
to update its own state. In our framework, we combine these approaches when
defining (replica) update events, recognizing the fact that an object generating
such an event is also capable of processing it. As in the notification-based
approach, a replica does not directly call methods in its peers, and as in the direct-
method invocation approach, it does not have to map notifications to the methods
that process them. The events are symmetric in nature and are defined in terms of
properties to support fine-grained coupling.

An update event encodes an operation invoked on a property of a replica and
the arguments of the operation. Specifically, it contains: (1) the global identifier
of the replica on which the operation is performed; (2) the name of the operation
(e.g., "insert” on section); and (3) a list of arguments. For example, inserting a
new section into the outline would be associated with an event of the form:

<”Outline”,“section”,“insert”,{2, section}>.

This information is used by the coupling infrastructure to perform a reflective
invocation on remote replicas without requiring them to translate the event. Thus,
this approach has the benefit of direct method invocations in that a target object
does not have to do any event processing. It also has the benefit of the indirect
notification-based approach in that the event can be sent to a variable number of
targets, and more important, can be “intelligently” handled by the system.

4.2. Parameterized Update-Event Handling

On the surface, there does not seem to be any need for special handling of update
events, beyond translating these events to corresponding replica methods. In fact,
this is all we need if (1) each replica responds to property updates by generating
corresponding update events, (2) all of these updates must be made synchronously
to all of the other replicas, and (3) replicas are not concurrently updated in
inconsistent ways. If these three assumptions do not hold, then special acquisition,
processing, and installation phases, respectively, are needed (Figure 11).

Object (A) Infrastructure

User A User B

Acquisition Installation

Processing

Object (B)Object (A) Infrastructure

User A User B

Acquisition Installation

Processing

Object (B)

Figure 11 Phases of update handling

In the acquisition phase, a description of the update to a shared property is
either received from the changed replica or generated by the infrastructure. In the
processing phase, the infrastructure filters, buffers, transforms, and communicates
the update to the remote parties. Finally, in the installation phase, the update is
merged with the current state of the remote object to which it is delivered. Each of
these phases is controlled by user-specified, interrelated parameters.

These parameters are associated with (properties of) each replica of a shared
object to allow users to autonomously control event handling. As the acquisition
and installation are local operations performed on the source and target objects,
respectively, these are controlled by the corresponding parameters of these two
objects. The processing operation, on the other hand, involves both objects as it
determines what is shared by the two objects and when it is shared. As the users
owning these objects should be allowed to independently specify the nature of
sharing, our framework uses processing parameters of both the sending and
receiving objects which place restrictions on outgoing and incoming events,
respectively. We use a Suite-like reconciliation mechanism based on conservative
matching. By conservative we mean that of the two versions of each processing
parameter (outgoing and incoming), we pick the one that supports less sharing
and, thus, come up with an effective coupling policy. For example, if one replica
wishes a property to be shared while the other does not, the effective sharing
policy does not share it. Realizing that an outgoing policy that is more liberal

(sends out more events) than its incoming counterpart would lead to the
communication of events that will be held at the receiver site for delivery, we
perform the matching at the sending site to avoid sending such events in the first
place. Hence, the receiving site does not perform filtering of incoming events but
proceeds directly to install them. Performing the policy matching at the sender, as
Suite does, implies that policy changes must be sent to the corresponding user(s)
every time a user modifies the incoming policy. This, however, is a good trade off
because policy updates are infrequent relative to object updates.

With each shared property, we associate four different parameters: Acquisition,
Transmission, Correctness, and Installation. The second and third parameters
generalize the semantics of corresponding Suite parameters to arbitrary user-
interfaces, while the first and last form our extension to the model to handle
existing objects and concurrent updates, respectively. Below, we describe the
meanings and values of each parameter in our model, and the pros and cons of
choosing different values.

Acquisition. This parameter controls the method used to obtain a replica
property update. Currently, we distinguish among four different acquisition
methods: Read, Log, Effective Log, and Diff, as well as the special value of None
which indicates that property updates should not be acquired (or shared).
 To illustrate the differences among the acquisition methods, consider the simple
scenario of a user inserting a new section in the list of sections in the outline. The
object may respond to the update in three ways:
1. It may conform to our event model and announce an update event exactly

encoding the operation and its parameters. In this case, the acquisition
parameter must be set to Log or Effective-Log. In the former case, each update
event is logged until the processing parameters require it to be transmitted.
Over time, the log of operations can become rather long if, for example, one of
the users is off-line for a prolonged period of time. Therefore, log-based
systems provide mechanisms for compressing the log by removing operations
whose effects will be undone by subsequent operations. If such compression is
desired, then the acquisition parameter must be set to Effective Log. We have
developed a generic scheme that performs log compression for static and
dynamic properties based on the operations defined on them. The disadvantage
of this acquisition method is that the remote user does not see each operation
invoked by the local user and may not see the rationale behind the changes.

2. It may conform, not to our event model, but instead to the more general model-
view model, which only requires that a notification be sent that the object has
been changed. In this case the acquisition parameter must be set to Read to tell
the infrastructure to record the end result of the user action by obtaining the
complete state of the object – in this example, the section list. While this
approach is attractively simple, it does not work well when different parts of an
object are concurrently edited by multiple users and we would like to merge
their work by combining the edited components (e.g. different sections).

3. It may not announce any update event. In this case, the acquisition parameter is
set to Diff to ask the infrastructure to derive the fine-grained operations from
successive snapshots of the object’s state. We have developed a general

property-based diffing algorithm to support this acquisition method (Roussev
2003), however, it cannot support incremental coupling.
Transmission. This parameter controls the transmission of updates based on

the communication operation performed on the shared entity and has four possible
values: Increment, Complete, Scheduled, and Transmit. Each individual update
such as insertion of a character and the dragging of a line is an Increment
operation. A Complete operation is executed whenever the user has indicated that
he is “finished” editing the value, e.g., hitting <tab>, releasing the mouse. The
semantics of this application-dependent operation is defined by synchronization
events (Section 4.3). A Scheduled operation is triggered by timer expiration and
has two parameters: execution time and a period. The operation is first triggered
at the specified wall-clock time, and it is then triggered periodically. The Transmit
operation is executed whenever the user explicitly requests it by pressing a
<Transmit> command provided by the infrastructure. This generalizes the send
command provided by a mail client by requiring the sender to explicitly indicate
when updates must be sent. The transmission parameters correspond to the
notification parameters identified in Shen (2002) for text editors and interaction
parameters supported for document editing in PREP (Neuwirth 1994).

Correctness. One of the problems of incremental coupling is that a user’s
mistakes are seen by others. That, however, may be desirable in some cases. For
example, a tutor may help a student with fixing semantic errors in a program. This
parameter lets collaborators choose the degree of correctness of shared changes.
Its possible values (in increasing order) are Raw, Parsed, Validated, and
Committed. By default, any updated value is Raw, unless it has undergone a
successful syntactic check after which it is elevated to Parsed. If the value has
also passed a check for semantic correctness, it becomes Validated. The exact
semantics of syntactic and semantic checks are defined by synchronization events
discussed below. Committed values are explicitly designated by the user by
executing an infrastructure-provided <commit> command.

Installation. Once an update is acquired and processed, it needs to be installed
on the remote object. We distinguish among three different ways in which this can
be achieved: Replay, Real-time Replay, Merge, and None. The Replay option is
the simplest choice—the operations are replayed one after the other, with the user
likely to have a “fast forward” experience in which minutes of collaboration are
compressed into seconds. Real-Time Replay, replays the events at the rate at
which they were executed at the transmitting site. The Merge installation option
refers to the use of a merge procedure (Munson 1997) that integrates the update
with the current version of the object. This is necessary when the simple replay of
the updates is not sufficient. None ignores remote updates entirely.

4.3. Synchronization Events

The user command that completes a series of incremental changes (e.g. mouse
button release), as well operations to parse/validate a value, are application-

specific. We define standard synchronization events that allow such information
to be passed along to the infrastructure in an application-independent fashion.

A synchronization event redefines the values of the transmission and
correctness attributes of the property operations that are still in the buffer. Such an
event is a four-tuple consisting of: (a) a global identifier of the object on which
the operation(s) are performed; (b) the name of the property affected where null
implies all properties of the object; (c) a new value for the transmission parameter
(Increment, Complete, Scheduled, or Transmit); and (d) a new value for the
correctness parameter (Raw, Parsed, Validated, or Committed). Thus, the tuple
<”Outline”,“section”,“Complete”,“Raw”> specifies that all property
operations on the section property of the object named “Outline” should be
relabeled as Complete and Raw unless they have higher values already. Once
relabeled, all affected events must be reevaluated with respect to the current
sharing policy and sent out if necessary.

4.4. Application Layer Model

Update and synchronization events provide a basis for flexible coupling but their
naïve use raises some correctness issues. Suppose that the outline title is edited
through a text field and both the text field and the outline object provide
notifications about changes to their state to the infrastructure. An infrastructure
that does not take into account the dependency between the states of the text field
and the outline would produce incorrect results by replicating the notifications at
both the text field and the Outline object. Thus, a character insertion by one user
would be lead to a duplicate insertion on other replicas. The causally related
notifications occur as a result of user actions being translated from a less abstract
to a more abstract layer, with each step triggering a separate notification.

The most common solution among existing infrastructures is to provide sharing
at one fixed layer (e.g., shared-window systems provide sharing at the window
layer). The shared layer processes events received from remote replicas the same
way it processes local events and propagates the results to upper (more abstract)
layers, thereby achieving the sharing of those layers as well. This approach
automatically eliminates the correctness problem but limits coupling flexibility.

To overcome this, we introduce an XML layer description language. An
application layering definition consists of two parts: layer mapping and layer
dependencies. The layer mapping is a set of tuples of the form <class,
property, layer> specifying that the named property of all object instances of
the given class belongs to the given layer. If the property is NULL, then all
properties in the class are implied. If no explicit definition is given for a particular
class, we recursively lookup the definitions for the superclasses until an
appropriate one is found. Once layers have been defined, the dependencies
between them are specified as shown on Figure 9.

In addition to correctness, this generic layer model also gives us a high-level
mechanism for sharing specification by dynamically changing the shared layer.
Sharing a higher layer is a trivial task because we move from tighter sharing
modes to more relaxed ones. However, the reverse process is non-trivial in the
general case. Consider the following scenario: Initially, users are using
asynchronous sharing of the model (i.e., they may have different versions of the
shared object). If they want to switch to view sharing, the infrastructure must first
bring the outline model versions into a consistent state using a merge procedure.
To switch to window sharing, both the view and the appearance must be
consistent beforehand. In general, to switch the sharing from a higher (more
abstract) layer Lk to a lower one Lm, the infrastructure ensures that all layers that
depend on Lm must be brought into consistency first.

4.5. Putting It All Together

Event Adapter

<Transmit> / <Commit> Timer

CouplerDiff, Read
…

… Registry

Coupling
Policy

Merge

Coupler Replay

Property event Synchronization eventTrigger act ion

Registry

User action

App Trigger

Outlin e
T itle

Sectio n
‘T itle’

Sectio n 1 .1
Sectio n 1 .2

Outlin e
Title

Sectio n
‘T itle’

Sectio n 1 .1
Sectio n 1 .2

Application Shared layer Non-shared layer

Properties
Lay ers

Specification

Coupling
Policy

Event Adapter

<Transmit> / <Commit> Timer

CouplerDiff, Read
…

… Registry

Coupling
Policy

Merge

Coupler Replay

Property event Synchronization eventTrigger act ion

Registry

User action

App Trigger

Outlin e
T itle

Sectio n
‘T itle’

Sectio n 1 .1
Sectio n 1 .2

Outlin e
T itle

Sectio n
‘T itle’

Sectio n 1 .1
Sectio n 1 .2

Outlin e
Title

Sectio n
‘T itle’

Sectio n 1 .1
Sectio n 1 .2

Outlin e
Title

Sectio n
‘T itle’

Sectio n 1 .1
Sectio n 1 .2

Application Shared layer Non-shared layer

Properties
Lay ers

Specification

Coupling
Policy

Figure 12 Event flow model of the infrastructure

Our infrastructure is not involved in communicating interaction events that go
between layers but handles communication of events that are passed across layers
(Figure 12). These events may be created explicitly by the programmer as update
events or implicitly by a diff or read operation in response to a synchronization
event. In both cases, they are delivered through a static, ‘well-known’ replicated
object called the Coupler. An event passes through the registry first to register
dynamic additions/deletions to the shared object structure. Next, the event is filed
with each of the outgoing queues associated with individual users, and it is then
evaluated with respect to each of the corresponding policies based on user and the

target object. Events that meet the minimum requirements set by the policy are
immediately sent to their respective recipients using an event multicast service.

After the remote site receives the incoming event, it is processed along the
same lines as outgoing events. First, the local registry and dependency tables are
updated, then the local Coupler looks up the installation policy, selects the
installation method, and applies the updates to the application object. The
difference between Figure 2 and Figure 12 graphically illustrates how we have
refined the abstract layer model by defining the communication between peer
replicas and a generic mechanism for dynamically selecting the shared layer.

The programmers are not concerned with the details of the low-level event
flow described above, which is driven by high-level code and the overhead of
specifying this code is proportional to the degree of flexibility desired.

5. Case Study Evaluation
To understand how well we can add flexible coupling to existing complex single-
user applications. One of these is GraphDraw, which is a Visio-like application
provided as part of the GEF (Graph Editing Framework) developed at the
University of California by Jason. Robbins. The basic goal of GEF is to provide a
UI toolkit for the development of various applications requiring graph editing,
such as circuit design, or a Petri net editor. GraphDraw is fairly simple; it
consists of 9 Java classes that define two types of graph nodes and two types of
graph edges and registers them with the framework, which handles everything
else. GEF, consist of 171 Java classes totaling over 26,000 lines of code.

Figure 13 Graph layer sharing

Figure 14 Graph view layer sharing

Figure 15 Graph view and figure sharing

Figure 16 Window layer sharing

A GEF graph diagram consists of three basic layers—a graph layer, a graph
view layer, and a figures layer. The graph layer represents the abstract graph
(nodes and edge) being edited. The graph view provides the specific graphic
representation through which users can manipulate the nodes and edges of graphs.
The figures layer consists of a number of standard shapes, such as ovals,

rectangles, and text boxes that can be used to annotate the graph. We also define a
window and an appearance layer much like we did for the Outline application.

This layer decomposition can be used to support multiple combinations of the
layers. It is possible to share only the graph layer, that is, the graph but not its
visual appearance and annotations (Figure 13). Sharing the graph view layer
(Figure 14) leads to the sharing of the topology and its graphic presentation but
not the annotations. To also share the annotations, we must as the infrastructure to
couple both the graph view and figures layers (Figure 15). In all of the above
cases, users retain the freedom to navigate autonomously and edit the graph
concurrently. Sharing the window layer window layer (Figure 16). This is the
WYSIWIS sharing supported by shared-window systems. As Table I below
suggests, it was fairly easy to interface GraphDraw and GEF with our
infrastructure. They employ only three basic patterns in the object structures we
want to share—standard simple (JavaBeans) properties, as well as two versions of
set properties very similar to the sequence property given earlier. The bulk of the
interfacing effort was concentrated on three event adapters that translate GEF-
defined events into property and synchronization events. All changes were linear
code with a total of only four if and six for statements; almost 20% of the code
changes were import statements.

We similarly interfaced our infrastructure with a graphical editor and the Java
Swing toolkit. The latter experiment resulted in an application sharing system that
allows the sharing of collaboration-unaware Swing applications. The interfacing
effort in both cases was very similar to the presented GraphDraw/GEF case.

GraphDraw
Action M odified M odified Added

Total Lines of Code 26 76 102 204
Affected C lasses 5 13 4 22
Code Com plexity

import statem ents 11 15 12 38
if statem ents 0 3 1 4

for statem ents 0 5 1 6

GEF
Total

Table I Code statistics for GraphDraw application adaptation

These and other experiences detailed in Roussev (2003) confirm our claim that
the infrastructure is high-level. In addition, as Sections 2 and 4 have shown, it
includes the coupling modes of all known high-level infrastructures and supports
programmer-defined user interfaces. Thus, it satisfies the requirements of
providing higher coupling and user-interface flexibility.

Figure 17 shows the practical benefits of satisfying these requirements. In
current systems, application sharing systems and collaboration-aware applications
do not share any high-level abstractions, making the cost of implementing them
high. This is probably the reason why more collaboration-aware applications such

as a spreadsheet have not been developed. Moreover, changing the coupling is a
heavyweight operation requiring manually switching between two different
systems. To illustrate, suppose we wish to share the NetMeeting (LiveMeeting, or
WebEx) whiteboard in a WYSIWIS manner so that we can browse the drawing
together. This requires its addition to the set of applications shared by the
application-sharing system. Now suppose we wish to switch to a collaboration
mode in which we can scroll independently. This requires us to (1) remove the
whiteboard from the set of shared applications and (2) use its native collaboration
support to re-establish the conference. If we do not take the first step, then two
different systems would try to simultaneously support sharing without
coordination. As Figure 17 shows, we allow application-sharing systems and
collaboration-aware applications to share a common-set of high-level
abstractions. Moreover, we can dynamically switch the coupling in a
collaboration-aware application, with the system ensuring causally dependent
events are not duplicated. Given the low cost of developing collaboration-aware
applications, we expect application-sharing to be used only for closed systems
that we cannot introspect or whose events we cannot intercept.

Dr
aw

 T
oo

l

Sp
re

ad
sh

ee
t

Pr
es

. T
oo

l

No
n-

W
YS

IW
IS

Dr
aw

 T
oo

l

No
n-

W
YS

IW
IS

Pr
es

en
tat

ion
 T

oo
l

Cl
os

ed
Sp

re
ad

sh
ee

t

Fl
ex

.C
ou

ple
d

Dr
aw

 T
oo

l
Fl

ex
.C

ou
ple

d
Pr

es
en

tat
ion

 T
oo

l
Application

Sharing System
App. Sharing System

Coupling Framework

Dr
aw

 T
oo

l

Sp
re

ad
sh

ee
t

Pr
es

. T
oo

l

No
n-

W
YS

IW
IS

Dr
aw

 T
oo

l

No
n-

W
YS

IW
IS

Pr
es

en
tat

ion
 T

oo
l

Cl
os

ed
Sp

re
ad

sh
ee

t

Fl
ex

.C
ou

ple
d

Dr
aw

 T
oo

l
Fl

ex
.C

ou
ple

d
Pr

es
en

tat
ion

 T
oo

l
Application

Sharing System
App. Sharing System

Coupling Framework

Figure 17 Coupling framework impact

5. Conclusions and Future Work

While there has been much effort in developing and automating general software
architectures (such as MVC) for single-user interactive applications, there has
been relatively less attention paid to multi-user applications. We have taken an
important step to address this problem by refining/formalizing the
abstract/informal layered architecture with several novel concepts for supporting
all known coupling modes without making assumptions about the user-interface.
These include (1) property-based decomposition to support fine-grained coupling,
(2) update events, unifying method- and notification-based communication, (3)
flexible acquisition, processing, and installation of these events, (4)
synchronization events to support multiple degrees of update synchronization, and
(5) layer definitions allowing users to dynamically choose shared layers.

Our preliminary experience has shown that changing complex, existing code to
interface with our infrastructure requires a few mundane changes to it consisting

mainly of writing event adapters. Further research is needed to verify that this
holds for a larger set of existing single-user applications/toolkits and adapt the
framework in response to problems uncovered by this research. It would also be
useful to automate other abstract collaboration architectures.

Acknowledgements
This research was funded in part by Microsoft and NSF grants ANI 0229998, EIA
03-03590, and IIS 0312328.

6. References

Begole, J. e. a. (1999). 'Flexible Collaboration Transparency: Supporting Worker Independence in
Replicated Application-Sharing Systems'. ACM TOCHI 6(2): 95-132.

Chung, G. Dewan, P. (2001). Flexible Support for Application-Sharing Architecture. Proceedings
of the European Conference on Computer-Supported Cooperative Work (ECSCW), Bonn.

Coutaz, J. (1987). PAC, an Object Oriented Model for Dialog Design. Proceedings of Interact.
Dewan, P. (1998). 'Architectures for Collaborative Applications'. Trends in Software, special issue

on CSCW 7: 169-194.
Dewan, P., Choudhary, R. (1992). 'A High-Level and Flexible Framework for Implementing

Multiuser User Interfaces'. ACM Transactions on Information Systems 10(4): 345-380.
Dyck, J., Gutwin, C., Subramanian, S., Fedak, C. (2004). High-Performance Telepointers. Proc of

the ACM Conference on Computer-Supported Cooperative Work (CSCW), Chicago, IL.
Graham, T. C. N., T. Urnes, et al. (1996). Efficient Distributed Implementation of Semi-Replicated

Synchronous Groupware. ACM Symposium on User Interface Software and Technology.
Greenberg, S., Marwood, D. (1994). Real-Time Groupware as a Distributed System: Concurrency

Control and its Effect on the Interface. CSCW, Chapel Hill, NC
Grundy, J. (1998). Engineering component-based, user-configurable collaborative editing

systems. Proc of Conference on Engineering for Human-Computer Interaction (EHCI).
Krasner, G., Pope, S. (1988). 'A Cookbook for Using the Model-View-Controller User Interface

Paradigm in Smalltalk-80'. JOOP 1(3): 26-49.
Munson, J., Dewan, P. (1997). Sync: a Java framework for mobile collaborative applications.

IEEE Computer. 30: 231-242.
Neuwirth, C. e. a. (1994). Computer support for distributed collaborative writing: Defining

parameters of interaction. CSCW, Chapel Hill, NC.
Prante, T. e. a. (2002). Developing CSCW Tools for Idea Finding - Emperical Results and

Implications for Design. CSCW, New Orleans, LA.
Roussev, V. (2003). Flexible Sharing of Distributed Objects Based on Programming-Patterns.

Ph.D. Thesis, Department of Computer Science, Chapel Hill, Univeristy of North Carolina.
Roussev, V., Dewan, P., Jain, V. (2000). Composable Collaboration Infrastructures based on

Programming Patterns. CSCW, Philadelphia, PA
Sarin, S., Greif, I. (1985). 'Computer-Based Real-Time Conferencing Systems'. IEEE Computer

18(10): 33-49.
Shen, H., Sun, C. (2002). Flexible Notification for Collaborative Systems. CSCW,New Orleans,LA.
Stefik, M. e. a. (1987). 'Beyond the Chalkboard: Computer Support for Collaboration and Problem

Solving in Meetings'. Communications of ACM 30(1): 32-47.
Tarpin-Bernard, F., David, B.T., Primet, P. (1998). Frameworks and Patterns for Synchronous

Groupware : AMF-C Approach. (EHCI), Heraklion, Greece.
Tse, E., Histon, J., Scott, S., Greenberg, S. (2004). Avoiding interference: how people use spatial

separation and partitioning in SDG workspaces. CSCW, Chicago, IL.
Wang, W., Dorohonceanu, B. and Marsic, I. (1999). Design of the DISCIPLE Synchronous

Collaboration Frameworks. IMSA, Nassau, Grand Bahamas.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

