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ABSTRACT 
In general, collaboration infrastructures have supported 
sharing of an object based on its logical structure. 
However, current implementations assume an implicit 
binding between this logical structure and particular 
system-defined abstractions. We present a new composable 
design based on programming patterns that eliminates this 
binding, thereby increasing the range of supported objects 
and supporting extensibility. 

INTRODUCTION  
The development of distributed collaborative applications 
is a challenging task and requires a number of 
implementation solutions that are not readily available in 
generic distributed system toolkits. To simplify and lower 
the cost of development of collaboration software, a large 
number of collaborative infrastructures have been built. 
Although their solutions vary, the approaches they have 
taken can be classified in two broad categories. 
One of the approaches emphasizes automation by 
supporting a fixed number of system-defined shared 
abstractions, for which the system provides various 
collaboration services. However, applications developed 
using these abstractions are inherently limited in scope and 
capabilities. For example, systems such as XTV that 
support sharing of the (system-defined) abstraction of a 
window provide a high level of automation but are 
fundamentally suited for WYSIWIS collaboration. The 
main problem here is that the infrastructure uses the sharing 
of the user interface of the object as a means of sharing the 
object itself and, therefore, the two cannot be separated.  
The other approach emphasizes flexibility by providing 
lower-level primitives for sharing arbitrary, programmer-
defined abstractions. This however, comes at the price of 
higher development cost, as the programmer must 
manually implement the sharing services. For example, 

broadcast methods [13] provide a basis for implementing 
sharing of arbitrary objects, however, it is the responsibility 
of the developer to implement the specific mechanism. 
The outlined approaches can also be viewed as representing 
two extreme design points in a fundamental trade-off 
between the system knowledge about the shared object and 
the kind of support it can provide. That is, the more a 
system knows about the object, the more specialized 
service it can provide. Inversely, the less it assumes about 
the object, the wider range of objects it can accommodate. 
For example, if two users are editing the same document 
simultaneously, and the document is opaque to the system, 
any two concurrent updates are conflicting. At the same, if 
the system knows that a document consists of a sequence of 
sections, it will consider simultaneous modifications to be 
in conflict only if they are within the same section. Further 
subdivisions of document (e.g., subsections, sentences, and 
words) present even better opportunities to provide fine-
grained collaboration services. 
In an attempt to integrate the described approaches, a 
number of systems, such as GroupKit [10], provide two-
level support for sharing: Applications using a set of 
system-defined object types get an automatic high-level 
sharing mechanism, whereas applications requiring 
programmer-defined types are given lower-level 
collaboration primitives to implement the desired behavior. 
This hybrid approach, however, does not reconcile the 
other two–it merely provides them under one roof. 
Therefore, the problem of designing a single mechanism 
that provides both automation and flexibility without the 
described limitations is still open and is the subject of this 
work. Specifically, we are interested in providing such a 
sharing mechanism for object-based systems. 
The first idea that helps us address this problem builds on 
the fact that collaboration services can be automated 
without full knowledge of the object semantics. For 
example, the concurrency control semantics mentioned 
above can be implemented by simply knowing the structure 
of the object. Thus, from a collaboration point of view, the 
structure of the shared object is more important than the 
particular semantics it implements. 

 



 

The second idea is to provide flexibility by developing a 
component-based architecture that permits incremental 
modifications to the system. The idea of component-based 
architectures is not new; our contribution is its application 
to the domain of collaboration. 
We have developed an approach for creating collaboration 
infrastructures based on these two ideas. The approach 
builds on the notion of a bean by extracting the logical 
stricture of an object based on patterns in the signatures of 
the public methods of the object. The second idea addresses 
the problem of flexibility within the infrastructure itself, 
that is, giving the developer the ability to change every 
aspect of the collaboration services. To achieve this we 
present a component-based architecture that permits 
incremental modifications to the system. We have 
implemented the approach in a system supporting three 
important collaboration services: coupling, merging, and 
access control. 
The rest of this paper is organized as follows. In the next 
section, we briefly survey a list of influential systems in the 
CSCW domain and identify the relationships among the 
design choices of these systems and their advantages and 
limitations. Next, we use these design choices to identify a 
set of generic requirements for collaborative and show that 
none of the existing systems meets all of these 
requirements. Following that, we describe a new approach 
for meeting these requirements and present two concrete 
implementations of the approach that support coupling and 
merging, respectively. Finally, we summarize our findings 
and outline future extensions of this work. 

RELATED WORK 
The first prerequisite for building any distributed 
application is the availability of a standard communication 
mechanism. The TCP/IP socket-based communication 
provides the basic means of remote message delivery and 
enables the development of any distributed application. 
However, its relatively low-level interface essentially 
forces the development of application-specific message 
protocols.  
To illustrate the problems with using TCP/IP, consider how 
it can support sharing of replicas of a document object that 
has a title, a sequence (ordered list) of sections, and a set of 
keywords and is an instance of the following class: 
class Document { 

 String getTitle(); 
 void   setTitle(String title); 
 Section getSection(int i); 
 void    setSection(int i,Section s); 
 int     getSectionCount(); 
 void    insertSection(int i,Section s); 
 void    removeSection(int i); 
 void     addKeyword(String key); 
 void     removeKeyword(String key); 
 String[] getKeyword(); 
} 

Programmers using TCP/IP must implement a message 
protocol to encode updates performed on the object, such 

as changing the title or adding a new section. A separate 
concern here is organizing group communications to 
propagate the updates, and yet another concern is ensuring 
consistency. Solving these problems involves tedious and 
routine work that involves writing code for operations, such 
as message parsing, that are not part of the main application 
functionality.  
To free the application-programmers from defining such a 
message protocol, the abstraction of remote procedure calls 
(RPC) was introduced [2]. RPC bridges the gap in the 
abstraction level between the application and the network 
interface by reducing the programming effort of remote 
access to a procedure call. For instance if we use Java's 
standard RMI (remote method invocation) mechanism, we 
could export any of the above methods and invoke them 
remotely instead of encoding them as messages. 
To automate group communication, many collaboration 
systems provide multicasting facilities. Corona [12], for 
example, is a server-based general-purpose multicast 
system that provides support for maintaining group 
membership and for message delivery. If we apply this 
approach to our document problem, we would be relieved 
from the burden of organizing the lower-level details of 
communication but we would still be responsible for 
designing the communication protocol among the client 
replicas and ensuring consistency. 
Integrating the ideas of group communications and RPC, 
GroupKit [10] provides a higher-level collaboration 
abstraction–multicast RPC–that allows a procedure call to 
be automatically invoked on multiple hosts. An analogous 
idea has been applied to objects and has resulted in the 
implementation of broadcast methods, such as the ones 
provided by the Xerox's Colab [13] system. To appreciate 
the advantages of this system, let us consider how it can 
help in sharing of the example object. We could declare all 
of the methods that modify the state of the object 
(setTitle, setSection, insert/removeSection, 
add/ removeKeyword) as broadcast. As a result, if all 
instances in the object group start with the same state, they 
will be kept consistent at all times (assuming that 
broadcasts are atomic and excluding non-idempotent 
operations). Thus, we achieved one commonly used form 
of sharing at a very low programming cost. However, given 
two versions of the same document, broadcast methods 
alone would be of little help in restoring consistency. 
Since this operation-centric mechanism is not suited for all 
collaboration scenarios, other systems have taken a more 
data-centric approach by providing a system-defined shared 
abstraction. In shared window systems, such as XTV [1] 
and DistView [9], collaboration is achieved through 
automatic sharing of application windows. Hence, to 
implement our document-sharing example, all we need is 
any single-user implementation of a text editor and a shared 
window system. Unfortunately, a shared window system is 
not a silver bullet for our sharing problems. It is inherently 
limited by the fact that it cannot allow sharing of an object 
without also forcing the sharing of its user interface. For 



 

instance, it cannot allow two different users to share the 
document object but scroll to different parts of it. 
Choosing a different shared abstraction does not help 
much. To illustrate this, consider GroupKit's [10] shared 
environments, which are dictionary-style data structures 
containing keys and associated values. The main feature of 
these environments is that all replicas are automatically 
kept consistent, and the application can register callbacks to 
learn about events of interest, such as insertions and 
deletions. To use the automatic sharing of GroupKit in our 
example, we would have to cast the document structure 
into an environment. However, this is both difficult and 
unnatural as the structure is inherently recursive and 
requires certain ordering. 
Sync [8] provides a more flexible solution by embedding 
generic collaboration capabilities into several base classes 
that can be combined with each other to create a larger 
variety of structures. In particular, the system provides 
classes for replicated records, sequences, and dictionaries. 
An application developed using these classes requires 
virtually no additional support to use the merging 
framework provided by the system. On the other hand, the 
framework exhibits the problems of shared window 
systems and GroupKit if a programmer-defined class must 
be shared. For instance, we cannot take our document 
object as it is and ask Sync to provide merging services. 
Instead, we must decompose it into a replicated record 
containing a string, a replicated sequence, and a replicated 
dictionary field. Further subdivisions of the document 
hierarchy must follow the same rules. In summary, we are 
faced with the choice of casting the shared data structure 
into a predefined set of primitives, or implementing it using 
a custom-built sharing mechanism. 
Thus, what we need is a mechanism to flexibly share 
arbitrary programmer-defined types. Such a mechanism has 
been implemented in Suite [3]. It allows the developer to 
choose any data representation and still get fine-grained 
structure-based collaboration services. The problem with 
Suite, however is that it is a C-based system and, therefore, 
does not support objects. Hence, constructing our shared 
document involves redefining it in terms of C data types. 
Another concern is the fact that Suite is designed as a 
monolithic system and changing aspects of the provided 
collaboration functions is difficult and error-prone. 
To address the latter problem, Prospero [4] uses 
computational reflection as a means of allowing the 
application to change the implementation of the 
collaboration toolkit. Another way to achieve this is to 
break the system into smaller components and define 
interfaces among them. In this case, modifications are 
introduced by replacing components with compatible ones. 
If all components adhere to the specified interfaces, the 
overall system correctness should not be compromised. For 
instance, JComposer [5] was initially implemented as a 
single-user CASE editing tool but due to its component-
based design was seamlessly extended to a collaborative 
application. Furthermore, the implemented collaboration 

services can be independently used to create collaborative 
versions of other editing applications. 
Each of the described systems has made its own set of 
design choices based on initial assumptions and target 
application domains. Based on our discussion so far, we 
can identify the following collaborative infrastructure 
requirements. 
INFRASTRUCTURE REQUIREMENTS 
Automation. As with most development environments, 
automation is the primary purpose of collaborative 
infrastructures. Typically, automation is measured by the 
amount of code a programmer has to write to build a 
particular application. In the case of a collaborative 
environment, it is a measure the developer's effort to 
achieve multi-user behavior with respect to the single-user 
case. 
Flexibility. The flexibility requirement is so broad that we 
must consider different aspects of it to classify different 
systems. We distinguish among four different types of 
flexibility. 
• Semantics flexibility. This refers to the generic 

capabilities of the infrastructure to offer an 
implementation platform for a full range of 
collaborative services. To evaluate a system with 
respect to this requirement, we ask the question: what 
range of collaboration behavior can be achieved using 
the mechanisms supplied by the toolkit?  

• Extensibility. It is not reasonable for any system to 
assume that it provides an exhaustive list of features 
covering all possible applications and scenarios. 
Hence, it is important to allow programmers to devise 
their own extensions and to customize system 
behavior.  

• Composability. This is an extension of the previous 
requirement–a composable system allows the 
developer to take any part of the system and replace it 
with a custom one. An important issue here is the 
granularity at which this process takes place–ideally, it 
should be restricted only to those logical components 
that need to be changed. 

• Abstraction flexibility. As part of the task to lower the 
development cost, infrastructures must support sharing 
of as many types of objects as possible–in particular 
programmer-defined object types. 

Reuse. Often, the development of multi-user applications 
starts with a fully implemented single-user version of it. 
Therefore, the extent to which existing functionality is 
reused has a direct impact on the complexity and cost of the 
application development.  
Standard language support. It is important to avoid 
(whenever possible) additional support from the language, 
such as specialized compilers or interpreters. Thus, the 
implementation of the collaboration infrastructure should 
not be bound to a specialized language interpreter and can 
be modified independently. 



 

Table 1 evaluates each of the described systems with 
respect to the derived requirements. When a requirement 
can be met to different extents, we use high(H), 
medium(M) and low (L) to approximate the degree to 
which the requirement can be met. The main purpose of 
this evaluation is to establish benchmarks that will help us 
in evaluating the success of the proposed new design. Table 
1 clearly shows that none of the presented systems meets 
all of the requirements to a high degree. Therefore, our goal 
is to design a system that satisfies each requirement at least 
as well as the best system in the category. 
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TCP/IP L H H L Y H Y
RPC/RMI L H H L Y H N/Y
Corona M H H L Y M Y
Multicast RPC M H H L Y H Y
XTV/DistView H M L L Y H Y
Sync H M L L N L Y
Suite H M L L Y L N
JComposer L M H H N H Y  

Table 1 System evaluation 

PROPERTIES AND PATTERNS 
Let us consider first how a high-level of automation and 
semantics flexibility can be provided for programmer-
defined objects. To understand how this goal can be 
achieved, consider the two approaches we have seen above 
in the treatment of object semantics in current collaboration 
infrastructures. 
The first one assumes nothing about the object semantics 
and leaves the development of sharing mechanisms entirely 
in the hands of the programmer. This leads to an open 
system where flexibility is not restricted but the lack of 
semantic information limits the automation opportunities. 
The second approach takes the opposite assumption as a 
starting point–object semantics is fixed up front (through a 
set of system-defined objects) and appropriate 
collaboration services are provided. This leads to a much 
higher degree of automation but may pose flexibility 
problems if the supplied primitives are inadequate for a 
particular application, or code reuse is an issue. 
The key to automation is the automated discovery of object 
structure. Once the structure is derived, we can use existing 
techniques to provide means of supporting variable-grained 
collaboration functions. 
Our solution is based on the observation that an object is 
not an opaque entity but represents a logical structure. 
Therefore, what is needed are ways to extract this structure 
without violating the data encapsulation principle. As it 

turns out, the JavaBeans framework [6] provides a basis for 
implementing this approach. 
Simple and indexed properties 
The main goal of JavaBeans is to define a generic 
component-based architecture for Java programs. An 
application built according to the architecture consists of 
(Java) beans–objects that adhere to a particular 
programming style that permits their automated 
customization and composition. Beans are programmed 
using certain conventions that allow an external agent, 
called the introspector, to decompose them into 
components called properties. 
'Properties are discrete, named attributes of a Java Bean 
that can affect its appearance or its behavior' [6]. This is a 
very broad definition that can be applied to a wide range of 
objects. However, for the purposes of describing the logical 
structure of an object we need a more precise property 
definition. Therefore, by summarizing the discussion in [6], 
we give the following definition.  An (object) property is a 
named attribute of an object that adheres to a well-defined 
semantics and is implemented by a set of dedicated 
methods.  
The main benefit of this more formal definition is that it 
specifies that properties are externally recognizable by the 
appearance of a specific group of methods, and requires 
that these methods implement a pre-defined semantics. 
Intuitively, we can think of a property as representing an 
abstract data type with the corresponding methods 
implementing the individual operations on the type. 
By default, Java recognizes two types of properties–simple 
and indexed. A simple property is defined by a pair of 'get' 
and 'set' methods of the following form: 
<PropertyType> get<PropertyName>() 
void set<PropertyName>(<PropertyType> value) 

The 'get' method corresponds to a read operation and 
returns the current value of the property, whereas the 'set' 
method defines a write operation that assigns a new value 
to the property. Thus, if a matching 'get'/'set' pair is found 
during the object analysis, then a read-write property 
named propertyName of type PropertyType is 
discovered. In some cases, one of the methods may be 
absent in which case the property is considered as write-
only/read-only respectively. 
Indexed properties are a natural extension of simple 
properties and approximate standard array semantics in 
procedural languages. Whenever a simple property of an 
array type is discovered, it is considered to be an indexed 
property. The object is then searched for a second pair of 
get/set methods that manipulate individual elements by 
their index. 
The main advantage of this property-based view of the 
object is that it enables the logical decomposition of a bean 
object by representing it as a collection of properties with 
predefined semantics. However, the standard JavaBeans 
model exhibits a number of limitations that stem from the 



 

fact that property naming conventions and semantics are 
hardwired into the system:  
• Legacy code must either be rewritten to comply with 
the exact specification, or interfacing code must be added. 
In general, even previous versions of the Java APIs have 
not followed such strict conventions. Well-written systems 
usually follow similar conventions but may use other 
keywords. For example, instead of 'get', developers may 
have used other verbs to describe the reading of a property–
'read', 'check', etc. Similarly, write operations may be 
represented by methods starting with 'write', 'update', 'reset', 
etc., instead of 'set'. To accommodate such classes within 
JavaBeans framework, the developer must supply 
additional BeanInfo classes for each of the original classes. 
• Typing information is not used in defining the property 
name. For example, given the following method signatures, 
public void set(Parent newParent); 
public void set(Editor newEditor); 

the standard Java introspection will not recognize them as 
defining two write-only properties–parent and editor. It is 
natural to interpret the above signatures as shorthand for 
public void setParent(Parent newParent); 
public void setEditor(Editor newEditor); 

which would be interpreted as defining properties. 
Finally, and most importantly, the set of recognizable 
properties is limited and the system provides no means of 
extending it. It is not hard to argue that the existing Java 
support for properties is not general enough for our 
purposes. A quick look at the widely used Vector and 
Hashtable classes that are part of the JDK reveals that, 
according to the standard Java Introspection, they have no 
identifiable properties of their own. One possible solution 
is to replace all Vector and Hashtable occurrences in the 
source with appropriately written adapter classes. An 
adapter class is a direct descendant of the class it replaces 
and defines additional methods that adhere to the 
JavaBeans naming conventions and, therefore, has 
properties. However, this solution is fundamentally 
unsuitable, as it does not capture the dynamic nature of the 
Vector class–its ability to incrementally change its 
structure through the addition/removal of individual 
elements. 
To overcome the outlined limitations, we extend the 
standard JavaBeans property model to allow for a more 
flexible specification.  
Generalized properties and programmer-defined 
patterns 
In an effort to gain flexibility, we split the problem of 
specifying a property from its interpretation. Therefore, we 
introduce the notion of programming patterns as a means 
of generalizing the JavaBeans naming conventions. A 
programming pattern (or pattern) is a set of method naming 
conventions, whose purpose is to expose aspects of the 
structure and the semantics of an object. In particular, 
patterns can be used to advertise object properties. Thus, 

Java's get/set naming conventions are just a special case of 
using patterns. 
Our next problem is to provide a mechanism that is flexible 
enough to accommodate the description of arbitrary 
(programmer-defined) properties through patterns. For that 
purpose, we use a declarative property specification 
language, which is explained below. 
We adopt the de facto standard mixedCase naming 
convention as the basis for our pattern analysis. 
Specifically, we assume that method names consist of one 
or more tokens. The beginning of each token is marked by 
a capital letter following a small letter or, in case there is 
more than one consecutive capital letters, by a capital letter 
followed by a small letter. For example, getUIGenerator 
is decomposed into three tokens (get-ui-generator). 
The rest of this paper discusses pattern matches only at the 
token granularity. 
The first step in the property specification is to define 
method signature patterns (method patterns) that select 
candidate methods. The patterns are based on a canonical 
string representation of method signatures of the form 
<return_type> method_name(arg1_type, …,argN_type) 

In addition, method patterns contain free pattern variables 
that are assigned string values and are denoted by enclosing 
them in a pair of dots. For example, to define the standard 
Java Introspection 'get'/'set' methods we use the following 
declarations: 
getter = <.GetType.> get.Prop.()  
setter = <void> set.Prop.(.SetType.) 

Pattern variables are assigned upon the completion of a 
successful match, and contain the maximum length match 
(which may span several tokens). For example, if the above 
getter declaration is matched against the method int 
getXPos(), the values of the pattern variables would be as 
follows GetType == "int" and Prop == "xPos". 
The second step is to define the conditions under which 
candidate methods are grouped together to define 
properties. To illustrate this, consider the following 
declaration, which completes the description of the 
standard Java properties1. 
property 
  type = simple 
  methods = getter, setter 
  constraints 
    getter.Prop == setter.Prop 
    getter.GetType == setter.SetType 
  handler = colab.bus.SimplePropertyHandler 
  name = getter.Prop 
end 

                                                           
1 The actual system implementation discussed in the case 
studies uses XML to represent the property definitions. For 
the sake of brevity, we have used simplified syntax in this 
discussion. 



 

The specification states that a property of type simple is 
defined whenever two methods can be found such that they 
match the getter/setter patterns, and their respective pattern 
variables satisfy the given constraint equalities. Recall that 
the reason for extracting properties of an object was to 
perform several structure-based functions such as diffing 
and merging automatically. This processing tends to be 
done recursively, with a different object handling each 
level of the structure. The type of this object depends on 
the property. The handler of a property is the class of the 
object that performs the structure-based operations for the 
property. It is looked up by the handler of the parent of the 
property. After looking it up, the handler can instantiate it 
and invoke appropriate (operation-specific) methods in it. 
The last line gives a rule for deriving a public name for the 
property that helps distinguish it from other properties 
derived by the same specification. 
Recall that one of the shortcomings of the JavaBeans 
model was the inability to provide alternative patterns for 
the same type of property. To show how we handle this 
issue, consider describing the special case of boolean 
properties. As an exception to standard JavaBeans naming 
conventions, the system allows the 'get' method to have 
following form: 
boolean is<PropertyName>(); 

Describing this exception in our model is straightforward–
all we need is an alternative definition for the getter 
method and the rest of the definitions will work as before: 
getter = <boolean> is.Prop.()  

Our next order of consideration is identifying a set of 
properties that should, by default, be supported by the 
infrastructure. Given our goal of achieving the level of 
support of current systems, we choose a model that 
parallels that of Sync, which provides the largest set of 
structures. Since simple properties already express the 
same structure as Sync’s replicated records, we only need 
to define properties analogous to its replicated sequence 
and dictionary types. 
For that purpose, we use sequence and table properties. A 
sequence, as already discussed, represents a mapping 
between natural numbers and object elements, thus 
introducing an implicit ordering among the elements. A 
table consists of a series of associated key-value pairs of 
objects. Both sequences and tables can have a variable 
number of elements. Although sequences can be viewed as 
a special case of tables, their widespread use warrants 
separate treatment. 
Following our pattern approach, we detect a sequence 
property by the presence of a pair of get/set methods that 
access/assign individual sequence elements, a size method 
that returns the number of elements, and a pair of 
insert/delete methods that introduce structural changes by 
inserting/removing elements. 
Similarly, to distinguish a table property, we search the 
object for a get method, as well as a pair of put/remove 
methods. The only notable difference with sequences is that 

we need an additional elements method that returns an 
enumeration of all current elements.  
Thus, our model provides default implementations of four 
types of properties–simple, indexed, sequence, and table. 
(Indexed properties are entirely subsumed by sequences but 
are included for compatibility reasons.) However, the 
programmer is free to modify/extend the set of supported 
properties by providing appropriate specifications and 
implementing the property-specific part of the 
collaboration services. To incorporate new types of 
properties  in the collaborative application, the developer 
invokes the system-provided PropertyIntrospector, which 
reads in the specifications, registers the corresponding 
handler classes, and performs the pattern matches on the 
shared objects. 
The discussion so far showed how object structure can be 
used to reconcile the requirements of abstraction flexibility 
and automation. Our evaluation table, however, shows that 
to meet all requirements we also need to resolve the 
conflicts among the requirements of composability, 
automation, and reuse. 
Composition requires that objects communicate using a 
well-defined generic protocol. Furthermore, 
communication should be indirect to avoid unnecessary 
object dependencies that limit composability. Thus, we 
adopt an event-based approach that satisfied these two 
requirements and discuss its implication for our 
collaboration model. 
EVENTS 
Once again the original JavaBeans framework provides the 
basis for our event model. Recall that, in JavaBeans, there 
is only one type of operation (write) that leads to state 
changes. Therefore, there is a single type of event 
(PropertyChangeEvent) that covers all updates and, by 
convention, is issued by the bean object after each property 
modification. However, given our extended set of 
recognizable properties, we need an appropriate extension 
of the event model. For each new property, we need a new 
event object that can encode the specific operations 
performed on the property. In general, such an event 
includes the type of the operation, e.g., insert, and its 
arguments, e.g., {“Bob Smith”, 1}. Thus, the event model 
closely matches the supported properties. 
Another requirement that bean objects must fulfill to enable 
event-based communication is to maintain a current list of 
listeners and to propagate each update event to all of them. 
For that purpose, beans export a pair of add/remove 
methods through which interested listener objects can 
register to receive events. 
Thus, a well-behaved bean in our model (as opposed to in 
the JavaBeans model) must meet two obligations–event 
announcement and event distribution that, strictly speaking, 
are not part of its main functionality. This leads to a 
conflict with both the reuse and automation requirements–
legacy code cannot be expected to follow the bean event 



 

model and additional programming effort is needed to build 
this communication model into objects.     
The event distribution can easily be automated by 
delegating it to a specialized object that maintains the 
listener list and propagates event notices (JavaBeans 
provides similar functionality). As it turns out, the event 
announcement is a stronger requirement and is harder to 
automate. Nevertheless, one of our case studies shows that, 
in asynchronous collaboration scenarios, it is feasible to 
fully relieve the bean object from its event announcement 
and distribution commitments by using an external agent to 
generate the events on its behalf. The key idea here is to 
exploit the property structure of the object and to deduce 
update operations from consecutive snapshots of the 
object's state. 
The following section illustrates the use of our overall 
framework in the implementation of two concrete 
collaboration services–coupling and merging. It also refines 
the architecture for these specific services. 

CASE STUDIES 
The goal of our coupling experiment was to design a 
generic property-based coupling service, and to use it to 
provide different levels of coupling to an application based 
on the popular model-view-controller (MVC) paradigm. 
We chose an existing Java implementation of a (single-
user) drawing editor and used it to understand how the 
property-based architecture can handle reuse. The original 
application was organized as follows. Its model consist of a 
(hash)table where all of the shape objects (ovals, 
rectangles, text, etc.) in the current drawing are stored. 
Individual shapes are accessed through globally unique 
identifiers assigned at creation time. The view maintains an 
up-to-date graphical representation of the objects on the 
screen by refreshing the image every time a modification to 
the model occurs. The controller keeps track of user 
actions and translates them into operations on the model. 
Our first experiment was to add model coupling to the 
application without making changes to the original code. In 
particular, we could not assume that the model object 
provides event notification. Therefore, we used a property-
based implementation of an object diff-ing service similar 
in idea to the UNIX diff tool. The main difference is that 
diff works on text files, whereas our service works on 
objects: given two versions of a (property-based) object–
old and updated–the object diff returns a list of operations 
such that, if applied to the old version, the two objects 
become consistent. We encoded the operations as event 
notices identical to the ones a proper bean would generate 
to describe them. 
The overall architecture of the system is depicted in Figure 
1. We used a generic implementation of a coupling service 
that keeps a group of distributed bean objects consistent as 
follows. Each site has a local coupling agent that listens for 
property update events from local object replicas and 
transmits them to all processes in the session. At the remote 
sites, the events are translated back into (property-based) 

operations that are applied to the corresponding objects and 
their shadow copies (previous versions). 

Figure 1 Diff-based model coupling 

The underlying communication service uses an RMI-based 
multicast server that delivers events to a group of clients. 
However, the coupler interacts with the communication 
layer using the bean event model, and, therefore, is not 
bound to this particular implementation.  
The full solution works by combining the coupling and the 
diff-ing services–the diff object maintains a shadow copy 
of the shared object and, whenever prompted, performs a 
diff operation on the shadow copy and the new version of 
the object. The result is sent to the local coupler in the form 
of property update events and processed as described 
above. 
The only open question is how to trigger the 
synchronization process. One simple solution is to let the 
user do it explicitly by pressing a button, or selecting a 
menu item. Another is to use a timer and initiate the 
process periodically. In our case however, the application 
provided an interesting option–to add the diff object as 
another view and, hence, be indirectly notified whenever 
the user performs an update. Thus, we effectively simulated 
a scenario where the user initiated synchronization after 
each operation. 
Although this scheme performed reasonably well in that 
there was no noticeable performance degradation in our 
case study, it is obvious that it is not efficient–the diff 
object must traverse the whole object structure every time it 
is invoked. Consequently, this approach is inherently 
suitable for a more asynchronous collaboration scenario.  
In our second experiment, we wanted to add view coupling 
to the drawing tool by reusing the same coupling service. 
Fundamentally, view coupling implies a more synchronous 
collaboration scenario and, therefore, requires explicit 
event notification. The initial intuition was that the 
widespread use of events in UI toolkits would make the 
task easier. Indeed, the standard Java user interface 
library–the AWT–promptly provides event notification 
about any UI events of interest, such as resizing a window 
or pressing a button. Unfortunately, its UI components do 
not follow the JavaBeans naming conventions and cannot 
be directly attached to our coupling service. 
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To address this mismatch, we built adapter classes for each 
of the UI objects used in the application such that they 
correctly follow the bean naming conventions and translate 
AWT events into property change events. For example, a 
COMPONENT_RESIZED event is translated into a change to 
the object's size property and communicated accordingly. 
Figure 2 illustrates the new configuration. 

Figure 2 View coupling with bean adapters  

Since the adapter classes can be used with any AWT-based 
Java application, the only application-specific developer 
effort was to attach the adapters to the base components. In 
practice, this translates into one additional method 
invocation per application window as the subcomponents 
are automatically handled in a recursive manner. 
It is interesting to measure the effort involved in writing the 
adapter classes, as it can help in estimating the effort in 
converting a conventional object-based application into a 
bean-based one. Overall, it took us 430 lines of code 
distributed over eight classes. To a great extent the task was 
simplified by organizing the adapters into an inheritance 
hierarchy, parallel to the one of the original objects. Thus, 
the bulk of the code (~150 lines) was concentrated in one 
base class dealing the generic beans. The rest were 
relatively easy to implement, as most of the code was 
routine. 
Another potential concern for the described implementation 
is the cost of performing the property matches for the 
shared objects. Indeed, the time to discover object 
properties for classes with a lot of methods can be 
significant. For example, this process can take 1.5s for the 
java.awt.Frame class. Fortunately, all the information is 
class specific and , therefore, can be derived off-line. Thus, 
the application is only burdened by the cost of loading it 
from a file at startup time. 
In a separate experiment, we modified the original version 
of Sync [8] to show the reuse of existing infrastructure 
components, and to explore the issues involved. Recall that 
the architecture of Sync relies on the inheritance 
mechanism to provide sharing of application objects. In 
other words, for an object to be shared automatically, it 
must be subclass of the system-defined  
ReplicatedSequence or ReplicatedDictionary 
classes. The main problems of this approach become 
apparent when it is applied to existing code. Due to the 
single inheritance model of Java, adding Sync's services to 

a single-user application is a cumbersome procedure, as it 
typically involves a major overhaul of the inheritance 
hierarchy of the whole application. 
More generally, Sync’s problem is that it ties the supported 
object structures (record, sequence, and dictionary) to 
particular class abstractions. Hence, to support abstraction 
flexibility, we must implement a model that permits the 
separation of the object structure discovery from the rest of 
the system. To illustrate this transition, let us consider the 
implementation of our document example under the 
original and updated versions of Sync. 

Figure 3 Original Sync architecture 

Figure 3 presents the implementation of a shared document 
(MyDocument) according to the original Sync architecture. 
For the sake of brevity, we assume that the document 
consists simply of a sequence of sections. Thus, it is 
sufficient to make MyDocument a subclass of the system-
provided ReplicatedSequence, which will keep a log 
of all updates to the sequence elements (represented by the 
shaded rectangle). Synchronization takes place whenever 
the user initiates it through the SyncClient, which queries 
the client replica for the log since the last synchronization. 
The log is then communicated to the SyncServer (which 
maintains the master copy) and eventually reaches the 
server replica. Depending on the current merge policy in 
place, the server selectively accepts the client updates, and 
sends back to the client a list of changes that must be 
applied to the client replica so that the two version reach a 
consistent state (the list may include updates from other 
clients). 
Figure 4 shows how the original version of Sync is 
transformed into  a pattern-based one through introduction 
of an adapter class. The main difference is that the shared 
object is no longer tied to a particular inheritance hierarchy. 
Instead, it implements a set of methods that are 
characteristic of a sequence pattern, such as 
insertElementAt and deleteElementAt. In addition, 
it issues events whenever updates to its elements are 
performed. 
The other new element in the architecture is the presence of 
the SequenceDelegate object. Its function is to provide 
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means of reusing the existing Sync implementation. In 
essence, it mediates the synchronization process by 
maintaining a shadow copy of the local replicated object. 
As suggested by the figure, the SequenceDelegate is a 
direct descendant of one of Sync’s base classes—
ReplicatedSequence—and, as such, is automatically 
shared with its peer objects. It holds a reference to the user 
object—MyDocument—and is registered to receive update 
notifications from it. 

Figure 4 Pattern-based Sync architecture 

To illustrate how the synchronization process works, let us 
follow it step by step. Suppose that a new element is 
inserted into the client replica of MyDocument. The replica 
issues an event informing its listeners about the change. 
Thus, the local SequenceDelegate object is notified and 
performs a corresponding insert in its own shadow copy. 
The operation is automatically logged by Sync and later 
transmitted to the server. As a result, the server shadow 
copy is automatically updated. This triggers an invocation 
of the ‘insert’ method on the server replica of the shared 
object, which brings the two replicas to a consistent state. 
Here we showed how an adapter class for the sequence 
property was added. Similarly, we added adapter classes 
for simple properties and hashtables for a total of about 900 
lines of code in the adapter classes, which allowed us to 
reuse, without modification, approximately 9000 lines of 
Sync code. 
A potential drawback of adding the adapter code is that its 
overhead might noticeably degrade the system 
performance. Therefore, we did an experiment with a 
drawing application and took measurements to quantify the 
effect of the added code on the overall cost of merging. As 
it turns out, in our experiment, merging took the same time 
in both the original Sync and its pattern-based extension 
with adapter classes (about 70 milliseconds.). It is not clear 
if the adapter classes will add negligible overhead for 
collaboration functions such as coupling that are less 
expensive than merging. 

Thus, the merging experiment shows that it is possible to 
implement our approach using existing implementation of 
an infrastructure. 

EVALUATION     
To convince ourselves that the presented architecture 
indeed meets the identified requirements, let us examine 
them one by one and compare our accomplishments with 
that of other systems. 
Our first requirement was to support a high degree of 
automation in application development. In the coupling 
example, we demonstrated the addition of collaboration 
services that is achieved at minimal development cost. 
Furthermore, our approach supports the incremental 
development of collaborative applications where the level 
of support rises as a function of how much information the 
application provides. As our example showed, it is possible 
to add asynchronous collaboration just by using standard 
patterns in the object design. Adding the standard 
JavaBeans support for properties is sufficient for some 
objects to get synchronous sharing. Extending this support 
to include dynamic properties enables the full range of 
collaboration functions to be used. 
Recall that the first aspect of infrastructure flexibility was 
that of semantics flexibility. To satisfy this requirement, we 
modeled the supported logical structures after that of Sync, 
which subsumes the logical structures provided by other 
systems.  Thus, we do not claim any contributions with 
respect to this requirement, and provide the same 
expressive power as Sync. 
With the respect to abstraction flexibility, like Suite, we 
support programmer-defined types. While Suite supported 
conventional programmer-defined types, we support object 
types. Our approach cannot handle arbitrary programmer-
defined types–only those only those that have logical 
structures supported by us, and follow conventions that can 
be encoded in our pattern-based language. Thus, it supports 
more object types than existing systems but not all possible 
object types. 
Composition was another focus of this work and our two 
experiments show that we provide a high degree of 
composability comparable to that of JComposer. The main 
difference is that, in addition to addressing composition of  
the application and the collaboration infrastructure, we also 
address composability within the infrastructure itself. In 
our coupling example we showed how a generic coupler 
can be attached to two different application modules. At the 
same time, the coupling service implementation can be 
easily substituted without affecting other aspects of the 
system. This is possible because the application does not 
know specifics of the services that can be attached to it. It 
is unaware that it is being coupled or merged. 
Our case studies show that our approach is coherent with 
the goals of code reuse. In the first case, we were able to 
provide collaboration functions at virtually no cost to the 
application—the specialized adapter code written can itself 
be reused for any AWT-based user interface.  In the second 
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case, we addressed the reuse of existing collaboration 
function in the infrastructure and were able to achieve that 
at a modest cost. 
Finally, we did not go outside the limits of the Java 
language by adding non-standard features that require 
specialized processing. We based our work on the standard 
JavaBeans architecture and designed our extensions so that 
existing bean components can be directly integrated with 
our framework. 
CONCLUSIONS AND FUTURE WORK 
In this paper, we described a novel approach to building 
collaborative infrastructures. By reviewing previous work 
in the area, we derived a set of generic infrastructure 
requirements, related to automation, flexibility, and reuse 
that have not been simultaneously addressed by existing 
systems. Furthermore, we discussed the relationship 
between the design choices of these systems and their 
limitations. We showed that using the structure of shared 
objects is important in supporting flexible collaboration 
services but current systems have not been successful in 
providing a flexible mechanism for specifying that 
structure. 
To overcome this problem, we described an infrastructure 
design that is based on using programming patterns as a 
means of extracting the logical structure of shared objects 
without exposing details of their implementation. This 
approach is complemented by the adoption of an event-
based communication model that promotes a component-
based implementation of both the application and the 
collaboration framework. 
We concluded our discussion by showing example 
applications of our approach to two specific collaboration 
service–coupling and merging–and evaluating the results 
with respect to the initial requirements. In fact, we have 
implemented another service, access control, using this 
architecture and the JavaBeans vetoable events. We did not 
describe it because of lack of space. 
Our ongoing research efforts are aimed at extending this 
work in several directions. In the short term, we are 
working on integrating the described diff-ing and merging 
services, as they naturally complement each other. We also 
plan to fit other collaboration services, such as concurrency 
control and undo/redo into our model. 
Another line of study is to apply this pattern-based 
approach to the integration object-based programming and 
data specification languages, such as XML. Specifically, 
we would like to create an XML structure directly from an 
object based on the logical structure we extract [11]. 
In the longer term, we would like to also explore the use of 
predefined patterns to generate objects. That is, given a 
pattern specification, the user could fill in the pattern 
variables and the system could create a skeleton class 
definition that relieves the developer from routine work and 
guarantees a certain style of programming. 
So far, we implicitly assumed that objects behave nicely 
and their properties implement the expected semantics. An 

open issue here is the ability of the system to test the 
advertised object behavior. One possible solution is to use 
axiomatic specifications, as described in [7]. 
Finally, in this paper, we have not addressed architectural 
flexibility–the ability to support multiple architectures and 
dynamically adapt the architecture of an application. This is 
the subject of another project of our group, and we would 
like to eventually integrate it with this work. 
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